CO2 mitigation costs of catalytic methane decomposition
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2018.03.132
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Paul L. Joskow, 2011.
"Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies,"
American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
- Paul L. Joskow, 2010. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," Working Papers 1013, Massachusetts Institute of Technology, Center for Energy and Environmental Policy Research.
- Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," EUI-RSCAS Working Papers 45, European University Institute (EUI), Robert Schuman Centre of Advanced Studies (RSCAS).
- Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," RSCAS Working Papers 2011/45, European University Institute.
- Abánades, A. & Rubbia, C. & Salmieri, D., 2012. "Technological challenges for industrial development of hydrogen production based on methane cracking," Energy, Elsevier, vol. 46(1), pages 359-363.
- Ashik, U.P.M. & Wan Daud, W.M.A. & Abbas, Hazzim F., 2015. "Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 221-256.
- Viebahn, Peter & Daniel, Vallentin & Samuel, Höller, 2012. "Integrated assessment of carbon capture and storage (CCS) in the German power sector and comparison with the deployment of renewable energies," Applied Energy, Elsevier, vol. 97(C), pages 238-248.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ray, Debjyoti & Nepak, Devadutta & Vinodkumar, T. & Subrahmanyam, Ch., 2019. "g-C3N4 promoted DBD plasma assisted dry reforming of methane," Energy, Elsevier, vol. 183(C), pages 630-638.
- Konrad, Kai A. & Lommerud, Kjell Erik, 2021.
"Effective climate policy needs non-combustion uses for hydrocarbons,"
Energy Policy, Elsevier, vol. 157(C).
- Kai A. Konrad & Kjell Erik Lommerud, 2021. "Effective Climate Policy Needs Non-Combustion Uses for Hydrocarbons," Working Papers tax-mpg-rps-2021-09, Max Planck Institute for Tax Law and Public Finance.
- Konrad, Kai A. & Lommerud, Kjell Erik, 2021. "Effective Climate Policy Needs Non-combustion Uses for Hydrocarbons," IZA Discussion Papers 14451, Institute of Labor Economics (IZA).
- Wang, Zhaohua & Zhang, Hongzhi & Li, Hao & Wang, Bo & Cui, Qi & Zhang, Bin, 2022. "Economic impact and energy transformation of different effort-sharing schemes to pursue 2 ℃ warming limit in China," Applied Energy, Elsevier, vol. 320(C).
- Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Seunghyun Cheon & Manhee Byun & Dongjun Lim & Hyunjun Lee & Hankwon Lim, 2021. "Parametric Study for Thermal and Catalytic Methane Pyrolysis for Hydrogen Production: Techno-Economic and Scenario Analysis," Energies, MDPI, vol. 14(19), pages 1-19, September.
- Chen, Zong & Zhang, Rongjun & Xia, Guofu & Wu, Yu & Li, Hongwei & Sun, Zhao & Sun, Zhiqiang, 2021. "Vacuum promoted methane decomposition for hydrogen production with carbon separation: Parameter optimization and economic assessment," Energy, Elsevier, vol. 222(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.
- Durmaz, Tunç, 2016.
"Precautionary Storage in Electricity Markets,"
Discussion Papers
2016/5, Norwegian School of Economics, Department of Business and Management Science.
- Tunç Durmaz, 2016. "Precautionary Storage in Electricity Markets," Working Papers 2016.07, FAERE - French Association of Environmental and Resource Economists.
- Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022.
"How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
- Behrang Shirizadeh & Quentin Perrier & Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, , vol. 43(1), pages 43-75, January.
- Behrang Shirizadeh & Quentin Perrier & Philippe Quirion, 2019. "How sensitive are optimal fully renewable power systems to technology cost uncertainty?," Policy Papers 2019.04, FAERE - French Association of Environmental and Resource Economists.
- Behrang Shirizadeh & Quentin Perrier & Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," Post-Print hal-03100326, HAL.
- Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022.
"Why the sustainable provision of low-carbon electricity needs hybrid markets,"
Energy Policy, Elsevier, vol. 171(C).
- Jan-Horst Keppler & Simon Quemin & Marcelo Saguan, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Post-Print hal-03964488, HAL.
- Simshauser, P., 2019.
"On the impact of government-initiated CfD’s in Australia’s National Electricity Market,"
Cambridge Working Papers in Economics
1901, Faculty of Economics, University of Cambridge.
- Paul Simshauser, 2019. "On the impact of government-initiated CfD's in Australia's National Electricity Market," Working Papers EPRG 1901, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Karsten Neuhoff & Nils May & Jörn C. Richstein, 2018. "Renewable Energy Policy in the Age of Falling Technology Costs," Discussion Papers of DIW Berlin 1746, DIW Berlin, German Institute for Economic Research.
- Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
- Jeffrey C. Peters & Thomas W. Hertel, 2017.
"Achieving the Clean Power Plan 2030 CO2 Target with the New Normal in Natural Gas Prices,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
- Jeffrey C. Peters & Thomas W. Hertel, 2017. "Achieving the Clean Power Plan 2030 CO2 Target with the New Normal in Natural Gas Prices," The Energy Journal, , vol. 38(5), pages 39-66, September.
- Alexis Tantet & Philippe Drobinski, 2021. "A Minimal System Cost Minimization Model for Variable Renewable Energy Integration: Application to France and Comparison to Mean-Variance Analysis," Energies, MDPI, vol. 14(16), pages 1-38, August.
- Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
- Pejman Bahramian, 2021.
"Integration of wind power into an electricity system using pumped-storage: Economic challenges and stakeholder impacts,"
Working Paper
1480, Economics Department, Queen's University.
- Pejman Bahramian & Glenn P. Jenkins & Frank Milne, 2023. "Integration Of Wind Power into An Electricity System Using Pumped Storage: Economic Challenges and Stakeholder Impacts," Development Discussion Papers 2023-07, JDI Executive Programs.
- Pejman Bahramian, 2021. "Integration of wind power into an electricity system using pumped-storage: Economic challenges and stakeholder impacts," Working Paper 1478, Economics Department, Queen's University.
- Severin Borenstein & James Bushnell, 2015.
"The US Electricity Industry After 20 Years of Restructuring,"
Annual Review of Economics, Annual Reviews, vol. 7(1), pages 437-463, August.
- Severin Borenstein & James Bushnell, 2015. "The U.S. Electricity Industry After 20 Years of Restructuring," NBER Working Papers 21113, National Bureau of Economic Research, Inc.
- Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
- Rubio-Domingo, G. & Linares, P., 2021. "The future investment costs of offshore wind: An estimation based on auction results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- René Aïd & Matteo Basei & Huyên Pham, 2020. "A McKean–Vlasov approach to distributed electricity generation development," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 269-310, April.
- Montrone, Lorenzo & Steckel, Jan Christoph & Kalkuhl, Matthias, 2022. "The type of power capacity matters for economic development – Evidence from a global panel," Resource and Energy Economics, Elsevier, vol. 69(C).
- La Monaca, Sarah & Ryan, Lisa, 2017.
"Solar PV where the sun doesn’t shine: Estimating the economic impacts of support schemes for residential PV with detailed net demand profiling,"
Energy Policy, Elsevier, vol. 108(C), pages 731-741.
- Sarah La Monaca & L. (Lisa B.) Ryan, 2016. "Solar PV where the sun doesn’t shine: Estimating the economic impacts of support schemes for residential PV with detailed net demand profiling," Working Papers 201619, School of Economics, University College Dublin.
- Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021.
"Optimising VRE plant capacity in Renewable Energy Zones,"
Working Papers
EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Simshauser, P. & Billimoria, F. & Rogers, C., 2021. "Optimising VRE Plant Capacity in Renewable Energy Zones," Cambridge Working Papers in Economics 2164, Faculty of Economics, University of Cambridge.
- Chen, Hao & Gao, Xin-Ya & Liu, Jian-Yu & Zhang, Qian & Yu, Shiwei & Kang, Jia-Ning & Yan, Rui & Wei, Yi-Ming, 2020. "The grid parity analysis of onshore wind power in China: A system cost perspective," Renewable Energy, Elsevier, vol. 148(C), pages 22-30.
More about this item
Keywords
Catalytic methane decomposition; CO2 mitigation; Hydrogen production; Catalysis; Process modeling; CO2 mitigation costs estimation;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:151:y:2018:i:c:p:826-838. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.