IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp969-978.html
   My bibliography  Save this article

Catalytic methane decomposition over ZrO2 supported iron catalysts: Effect of WO3 and La2O3 addition on catalytic activity and stability

Author

Listed:
  • Al -Fatesh, Ahmed Sadeq
  • Kasim, Samsudeen Olajide
  • Ibrahim, Ahmed Aidid
  • Al-Awadi, Abdulrhman S.
  • Abasaeed, Ahmed Elhag
  • Fakeeha, Anis H.
  • Awadallah, Ahmed E.

Abstract

A leading method of hydrogen production that is free of carbon oxides is catalytic methane decomposition. In this research, Fe supported catalysts produced by wet impregnation method were employed in the methane decomposition. The effect of doping ZrO2 with La2O3 and WO3 on the catalytic performance was studied. Different techniques were used to characterize the catalysts. It was discovered that support doped with WO3 gave the best performance in terms of CH4 conversion, H2 yield and stability at the test condition (800 °C, 4000 ml/hgcat space velocity). The initial H2 yield was found to be 58%, 81% and 92% on Fe/ZrO2, Fe/La2O3–ZrO2 and Fe/WO3–ZrO2 catalysts, respectively. These values were significantly decreased to reach 20% and 25% over the Fe/ZrO2 and Fe/La2O3–ZrO2 catalysts after running for 240 min. On the contrary, the Fe/WO3–ZrO2 catalyst maintained its catalytic activity and stability within the reaction time. The BET results showed remarkable increase in the specific surface area of Fe/La2O3+ZrO2 and Fe/WO3+ZrO2 compared to Fe/ZrO2 catalyst. TPR profiles revealed progressive change in the valency of Fe in its combined form to the zero valence free metal. The Fe/WO3–ZrO2 catalyst showed the highest reduction temperature among the tested catalysts, probably due to the strong metal support interaction. The Fe/WO3–ZrO2 gave the best performance and maintained stability during the time on stream. Its stability was attributed to the higher dispersion and stabilization of iron nanoparticles on the surface of WO3–ZrO2 support. TEM and TPO results indicated that the deposited carbon was multi-walled carbon nanotubes with tabular structure.

Suggested Citation

  • Al -Fatesh, Ahmed Sadeq & Kasim, Samsudeen Olajide & Ibrahim, Ahmed Aidid & Al-Awadi, Abdulrhman S. & Abasaeed, Ahmed Elhag & Fakeeha, Anis H. & Awadallah, Ahmed E., 2020. "Catalytic methane decomposition over ZrO2 supported iron catalysts: Effect of WO3 and La2O3 addition on catalytic activity and stability," Renewable Energy, Elsevier, vol. 155(C), pages 969-978.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:969-978
    DOI: 10.1016/j.renene.2020.04.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812030570X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ashik, U.P.M. & Wan Daud, W.M.A. & Abbas, Hazzim F., 2015. "Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 221-256.
    2. Ashik, U.P.M. & Wan Daud, W.M.A. & Hayashi, Jun-ichiro, 2017. "A review on methane transformation to hydrogen and nanocarbon: Relevance of catalyst characteristics and experimental parameters on yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 743-767.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rudolph, Charlotte & Atakan, Burak, 2021. "Investigation of natural gas/hydrogen mixtures for exergy storage in a piston engine," Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Raza, Jehangeer & Khoja, Asif Hussain & Anwar, Mustafa & Saleem, Faisal & Naqvi, Salman Raza & Liaquat, Rabia & Hassan, Muhammad & Javaid, Rahat & Qazi, Umair Yaqub & Lumbers, Brock, 2022. "Methane decomposition for hydrogen production: A comprehensive review on catalyst selection and reactor systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Haneol Kim & Jongkyu Kim, 2021. "Numerical Study on Optics and Heat Transfer of Solar Reactor for Methane Thermal Decomposition," Energies, MDPI, vol. 14(20), pages 1-21, October.
    4. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Jikai Sun & Rui Tu & Yuchun Xu & Hongyan Yang & Tie Yu & Dong Zhai & Xiuqin Ci & Weiqiao Deng, 2024. "Machine learning aided design of single-atom alloy catalysts for methane cracking," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Zhang, Xiang & Kätelhön, Arne & Sorda, Giovanni & Helmin, Marta & Rose, Marcus & Bardow, André & Madlener, Reinhard & Palkovits, Regina & Mitsos, Alexander, 2018. "CO2 mitigation costs of catalytic methane decomposition," Energy, Elsevier, vol. 151(C), pages 826-838.
    7. Feng, Dongdong & Wang, Shizhang & Dong, Heming & Wang, Junjie & Wang, Fuhua & Shang, Qi & Zhao, Yijun & Sun, Shaozeng, 2024. "Mechanism on CMD reaction regulated by supports and promoters of Fe-based catalysts," Energy, Elsevier, vol. 298(C).
    8. Mirkarimi, S.M.R. & Bensaid, S. & Negro, V. & Chiaramonti, D., 2023. "Review of methane cracking over carbon-based catalyst for energy and fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    9. Suriyan Boonpiyo & Sureewan Sittijunda & Alissara Reungsang, 2018. "Co-Digestion of Napier Grass with Food Waste and Napier Silage with Food Waste for Methane Production," Energies, MDPI, vol. 11(11), pages 1-13, November.
    10. Abuseada, Mostafa & Fisher, Timothy S., 2023. "Continuous solar-thermal methane pyrolysis for hydrogen and graphite production by roll-to-roll processing," Applied Energy, Elsevier, vol. 352(C).
    11. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    12. Ashik, U.P.M. & Wan Daud, W.M.A. & Hayashi, Jun-ichiro, 2017. "A review on methane transformation to hydrogen and nanocarbon: Relevance of catalyst characteristics and experimental parameters on yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 743-767.
    13. Hajji, Yassine & Bouteraa, Mourad & ELCafsi, Afif & Belghith, Ali & Bournot, Philippe & Kallel, Ftouh, 2015. "Natural ventilation of hydrogen during a leak in a residential garage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 810-818.
    14. Ali Awad & Israr Ahmed & Danial Qadir & Muhammad Saad Khan & Alamin Idris, 2021. "Catalytic Decomposition of 2% Methanol in Methane over Metallic Catalyst by Fixed-Bed Catalytic Reactor," Energies, MDPI, vol. 14(8), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:969-978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.