IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics0360544224009083.html
   My bibliography  Save this article

Mechanism on CMD reaction regulated by supports and promoters of Fe-based catalysts

Author

Listed:
  • Feng, Dongdong
  • Wang, Shizhang
  • Dong, Heming
  • Wang, Junjie
  • Wang, Fuhua
  • Shang, Qi
  • Zhao, Yijun
  • Sun, Shaozeng

Abstract

Methane cracking technology for low-carbon energy conversion to produce hydrogen is a key technical approach in the pursuit of fossil energy decarbonization. Catalytic methane decomposition (CMD) is a process that accomplishes the fundamental removal of carbon from fossil energy without oxygen, producing high-quality carbon-based materials and H2. The functionality of supports and promoters was investigated using inorganic metal oxide support Al2O3, supported active metal Fe, and cocatalyst K. The results show that the Al2O3–Fe catalyst achieves the highest CH4 conversion of 65% at 850 °C, with a gas-phase H2 yield of 1189.72 mmol/gFe within 3 h, and a solid-phase carbon yield of 6.32 g/gFe, significantly higher than at 750 °C. The Al2O3–Fe–K catalyst achieves a methane conversion rate of 66.28% at 850 °C for 1.5 h, exhibiting relatively fast deactivation. The Al2O3–Fe catalyst catalyzes the formation of carbon nanotubes (CNTs) through methane cracking, resulting in mainly 'chain-locked' morphology. The promoter K acts on the surrounding metal clusters to influence the dispersion of active metal. The Al2O3–Fe–K catalyst is more favorable for the production of 'bamboo-shaped' carbon nanotubes, suggesting that K has a more significant impact on shaping the CNTs' products.

Suggested Citation

  • Feng, Dongdong & Wang, Shizhang & Dong, Heming & Wang, Junjie & Wang, Fuhua & Shang, Qi & Zhao, Yijun & Sun, Shaozeng, 2024. "Mechanism on CMD reaction regulated by supports and promoters of Fe-based catalysts," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224009083
    DOI: 10.1016/j.energy.2024.131135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ochoa, Aitor & Bilbao, Javier & Gayubo, Ana G. & Castaño, Pedro, 2020. "Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Shen, Yafei & Zhang, Niyu & Zhang, Shu, 2020. "Catalytic pyrolysis of biomass with potassium compounds for Co-production of high-quality biofuels and porous carbons," Energy, Elsevier, vol. 190(C).
    3. Deng, Wei & Wang, Xuepeng & Syed-Hassan, Syed Shatir A. & Lam, Chun Ho & Hu, Xun & Xiong, Zhe & Han, Hengda & Xu, Jun & Jiang, Long & Su, Sheng & Hu, Song & Wang, Yi & Xiang, Jun, 2022. "Polymerization during low-temperature electrochemical upgrading of bio-oil: Effects of interactions among bio-oil fractions," Energy, Elsevier, vol. 251(C).
    4. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Ashik, U.P.M. & Wan Daud, W.M.A. & Abbas, Hazzim F., 2015. "Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 221-256.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raza, Jehangeer & Khoja, Asif Hussain & Anwar, Mustafa & Saleem, Faisal & Naqvi, Salman Raza & Liaquat, Rabia & Hassan, Muhammad & Javaid, Rahat & Qazi, Umair Yaqub & Lumbers, Brock, 2022. "Methane decomposition for hydrogen production: A comprehensive review on catalyst selection and reactor systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part II: Catalytic research," Renewable Energy, Elsevier, vol. 189(C), pages 315-338.
    3. Wang, Chunsheng & Wang, Yishuang & Chen, Mingqiang & Hu, Jiaxin & Liang, Defang & Tang, Zhiyuan & Yang, Zhonglian & Wang, Jun & Zhang, Han, 2021. "Comparison of the regenerability of Co/sepiolite and Co/Al2O3 catalysts containing the spinel phase in simulated bio-oil steam reforming," Energy, Elsevier, vol. 214(C).
    4. Wang, Xin & Jin, Xiaodong & Wang, Hui & Wang, Yi & Zuo, Lu & Shen, Boxiong & Yang, Jiancheng, 2023. "Catalytic pyrolysis of microalgal lipids to liquid biofuels: Metal oxide doped catalysts with hierarchically porous structure and their performance," Renewable Energy, Elsevier, vol. 212(C), pages 887-896.
    5. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Fernandez, Enara & Santamaria, Laura & Amutio, Maider & Artetxe, Maite & Arregi, Aitor & Lopez, Gartzen & Bilbao, Javier & Olazar, Martin, 2022. "Role of temperature in the biomass steam pyrolysis in a conical spouted bed reactor," Energy, Elsevier, vol. 238(PC).
    7. Al -Fatesh, Ahmed Sadeq & Kasim, Samsudeen Olajide & Ibrahim, Ahmed Aidid & Al-Awadi, Abdulrhman S. & Abasaeed, Ahmed Elhag & Fakeeha, Anis H. & Awadallah, Ahmed E., 2020. "Catalytic methane decomposition over ZrO2 supported iron catalysts: Effect of WO3 and La2O3 addition on catalytic activity and stability," Renewable Energy, Elsevier, vol. 155(C), pages 969-978.
    8. Zhao, Liwen & Liu, Guilian, 2022. "Dynamic coupling of reactor and heat exchanger network considering catalyst deactivation," Energy, Elsevier, vol. 260(C).
    9. Yang, Hanmin & Cui, Yuxiao & Han, Tong & Sandström, Linda & Jönsson, Pär & Yang, Weihong, 2022. "High-purity syngas production by cascaded catalytic reforming of biomass pyrolysis vapors," Applied Energy, Elsevier, vol. 322(C).
    10. Zhu, Haodong & Yi, Baojun & Hu, Hongyun & Fan, Qizhou & Wang, Hao & Yao, Hong, 2021. "The effects of char and potassium on the fast pyrolysis behaviors of biomass in an infrared-heating condition," Energy, Elsevier, vol. 214(C).
    11. Lin, Qunqing & Zhang, Shuping & Wang, Jiaxing & Yin, Haoxin, 2021. "Synthesis of modified char-supported Ni–Fe catalyst with hierarchical structure for catalytic cracking of biomass tar," Renewable Energy, Elsevier, vol. 174(C), pages 188-198.
    12. Carolina del Mar Saavedra Rios & Loïc Simonin & Arnaud de Geyer & Camelia Matei Ghimbeu & Capucine Dupont, 2020. "Unraveling the Properties of Biomass-Derived Hard Carbons upon Thermal Treatment for a Practical Application in Na-Ion Batteries," Energies, MDPI, vol. 13(14), pages 1-25, July.
    13. Wang, Chunsheng & Wang, Yishuang & Chen, Mingqiang & Liang, Defang & Cheng, Wen & Li, Chang & Yang, Zhonglian & Wang, Jun, 2022. "Understanding relationship of sepiolite structure tailoring and the catalytic behaviors in glycerol steam reforming over Co/sepiolite derived Co-phyllosilicate catalyst," Renewable Energy, Elsevier, vol. 183(C), pages 304-320.
    14. Gao, Zhuwei & Li, Chengxin & Qi, Xinyu & Wei, Yaodong & Liu, Zhongxin, 2022. "Flow analysis on carbonaceous deposition of heavy oil droplets and catalyst particles for coking formation process," Energy, Elsevier, vol. 260(C).
    15. Lee, Seong Chan & Choi, Jae Hyung & Lee, Chul Woo & Woo, Seung Han & Lee, Jaekyoung & Woo, Hee Chul, 2022. "H2 production by steam reforming of Saccharina japonica-derived liquefied oils on NixCuy hydrotalcite-derived catalysts," Renewable Energy, Elsevier, vol. 191(C), pages 418-427.
    16. Hu, Mian & Ye, Zhiheng & Zhang, Qi & Xue, Qiping & Li, Zhibin & Wang, Junliang & Pan, Zhiyan, 2022. "Towards understanding the chemical reactions between KOH and oxygen-containing groups during KOH-catalyzed pyrolysis of biomass," Energy, Elsevier, vol. 245(C).
    17. Tamás I. Korányi & Miklós Németh & Andrea Beck & Anita Horváth, 2022. "Recent Advances in Methane Pyrolysis: Turquoise Hydrogen with Solid Carbon Production," Energies, MDPI, vol. 15(17), pages 1-14, August.
    18. Liu, Xu & Guo, Yang & Dasgupta, Anish & He, Haoran & Xu, Donghai & Guan, Qingqing, 2022. "Algal bio-oil refinery: A review of heterogeneously catalyzed denitrogenation and demetallization reactions for renewable process," Renewable Energy, Elsevier, vol. 183(C), pages 627-650.
    19. Chen, Cheng & Volpe, Roberto & Jiang, Xi, 2021. "A molecular investigation on lignin thermochemical conversion and carbonaceous organics deposition induced catalyst deactivation," Applied Energy, Elsevier, vol. 302(C).
    20. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    More about this item

    Keywords

    CH4 cracking; H2; Fe-based catalyst; K; Al2O3;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224009083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.