IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4403-d1159268.html
   My bibliography  Save this article

Cloud-Based Artificial Intelligence Framework for Battery Management System

Author

Listed:
  • Dapai Shi

    (Hubei Longzhong Laboratory, Hubei University of Arts and Science, Xiangyang 441000, China
    Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China
    These authors contributed equally to this work.)

  • Jingyuan Zhao

    (Institute of Transportation Studies, University of California-Davis, Davis, CA 95616, USA
    These authors contributed equally to this work.)

  • Chika Eze

    (Department of Mechanical Engineering, University of California, Merced, CA 95343, USA)

  • Zhenghong Wang

    (Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China)

  • Junbin Wang

    (BYD Automotive Engineering Research Institute, Shenzhen 518118, China)

  • Yubo Lian

    (BYD Automotive Engineering Research Institute, Shenzhen 518118, China)

  • Andrew F. Burke

    (Institute of Transportation Studies, University of California-Davis, Davis, CA 95616, USA)

Abstract

As the popularity of electric vehicles (EVs) and smart grids continues to rise, so does the demand for batteries. Within the landscape of battery-powered energy storage systems, the battery management system (BMS) is crucial. It provides key functions such as battery state estimation (including state of charge, state of health, battery safety, and thermal management) as well as cell balancing. Its primary role is to ensure safe battery operation. However, due to the limited memory and computational capacity of onboard chips, achieving this goal is challenging, as both theory and practical evidence suggest. Given the immense amount of battery data produced over its operational life, the scientific community is increasingly turning to cloud computing for data storage and analysis. This cloud-based digital solution presents a more flexible and efficient alternative to traditional methods that often require significant hardware investments. The integration of machine learning is becoming an essential tool for extracting patterns and insights from vast amounts of observational data. As a result, the future points towards the development of a cloud-based artificial intelligence (AI)-enhanced BMS. This will notably improve the predictive and modeling capacity for long-range connections across various timescales, by combining the strength of physical process models with the versatility of machine learning techniques.

Suggested Citation

  • Dapai Shi & Jingyuan Zhao & Chika Eze & Zhenghong Wang & Junbin Wang & Yubo Lian & Andrew F. Burke, 2023. "Cloud-Based Artificial Intelligence Framework for Battery Management System," Energies, MDPI, vol. 16(11), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4403-:d:1159268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4403/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4403/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyun-Ji Jun & Hyo-Sik Yang, 2021. "Performance of the XMPP and the MQTT Protocols on IEC 61850-Based Micro Grid Communication Architecture," Energies, MDPI, vol. 14(16), pages 1-13, August.
    2. Nadia Drake, 2014. "Cloud computing beckons scientists," Nature, Nature, vol. 509(7502), pages 543-544, May.
    3. Xinyu Liang & Shaojun Zhang & Ye Wu & Jia Xing & Xiaoyi He & K. Max Zhang & Shuxiao Wang & Jiming Hao, 2019. "Air quality and health benefits from fleet electrification in China," Nature Sustainability, Nature, vol. 2(10), pages 962-971, October.
    4. Khaleghi, Sahar & Hosen, Md Sazzad & Karimi, Danial & Behi, Hamidreza & Beheshti, S. Hamidreza & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "Developing an online data-driven approach for prognostics and health management of lithium-ion batteries," Applied Energy, Elsevier, vol. 308(C).
    5. Nadia Drake, 2015. "How to catch a cloud," Nature, Nature, vol. 522(7554), pages 115-116, June.
    6. Yang, Fangfang & Li, Weihua & Li, Chuan & Miao, Qiang, 2019. "State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network," Energy, Elsevier, vol. 175(C), pages 66-75.
    7. Li, Renzheng & Hong, Jichao & Zhang, Huaqin & Chen, Xinbo, 2022. "Data-driven battery state of health estimation based on interval capacity for real-world electric vehicles," Energy, Elsevier, vol. 257(C).
    8. Bian, Chong & He, Huoliang & Yang, Shunkun, 2020. "Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 191(C).
    9. Fei Tao & Qinglin Qi, 2019. "Make more digital twins," Nature, Nature, vol. 573(7775), pages 490-491, September.
    10. Maitane Berecibar, 2019. "Machine-learning techniques used to accurately predict battery life," Nature, Nature, vol. 568(7752), pages 325-326, April.
    11. Yinjiao Xing & Eden W. M. Ma & Kwok L. Tsui & Michael Pecht, 2011. "Battery Management Systems in Electric and Hybrid Vehicles," Energies, MDPI, vol. 4(11), pages 1-18, October.
    12. Xiong, Rui & Pan, Yue & Shen, Weixiang & Li, Hailong & Sun, Fengchun, 2020. "Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Turksoy, Arzu & Teke, Ahmet & Alkaya, Alkan, 2020. "A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Jiahang & Yang, Rufan & Hui, Shu-Yuen Ron & Nguyen, Hung D., 2024. "Dual Digital Twin: Cloud–edge collaboration with Lyapunov-based incremental learning in EV batteries," Applied Energy, Elsevier, vol. 355(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shunli Wang & Pu Ren & Paul Takyi-Aninakwa & Siyu Jin & Carlos Fernandez, 2022. "A Critical Review of Improved Deep Convolutional Neural Network for Multi-Timescale State Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 15(14), pages 1-27, July.
    2. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    3. Zhang, Junwei & Zhang, Weige & Sun, Bingxiang & Zhang, Yanru & Fan, Xinyuan & Zhao, Bo, 2024. "A novel method of battery pack energy health estimation based on visual feature learning," Energy, Elsevier, vol. 293(C).
    4. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    5. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    6. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    7. Panagiotis Eleftheriadis & Spyridon Giazitzis & Sonia Leva & Emanuele Ogliari, 2023. "Data-Driven Methods for the State of Charge Estimation of Lithium-Ion Batteries: An Overview," Forecasting, MDPI, vol. 5(3), pages 1-24, September.
    8. Wang, Ya-Xiong & Chen, Zhenhang & Zhang, Wei, 2022. "Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning," Energy, Elsevier, vol. 244(PB).
    9. Qian, Cheng & Guan, Hongsheng & Xu, Binghui & Xia, Quan & Sun, Bo & Ren, Yi & Wang, Zili, 2024. "A CNN-SAM-LSTM hybrid neural network for multi-state estimation of lithium-ion batteries under dynamical operating conditions," Energy, Elsevier, vol. 294(C).
    10. Saleh Mohammed Shahriar & Erphan A. Bhuiyan & Md. Nahiduzzaman & Mominul Ahsan & Julfikar Haider, 2022. "State of Charge Estimation for Electric Vehicle Battery Management Systems Using the Hybrid Recurrent Learning Approach with Explainable Artificial Intelligence," Energies, MDPI, vol. 15(21), pages 1-26, October.
    11. Chen, Junxiong & Feng, Xiong & Jiang, Lin & Zhu, Qiao, 2021. "State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network," Energy, Elsevier, vol. 227(C).
    12. Ren, Xiaoqing & Liu, Shulin & Yu, Xiaodong & Dong, Xia, 2021. "A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM," Energy, Elsevier, vol. 234(C).
    13. Hong, Jichao & Zhang, Huaqin & Zhang, Xinyang & Yang, Haixu & Chen, Yingjie & Wang, Facheng & Huang, Zhongguo & Wang, Wei, 2024. "Online accurate voltage prediction with sparse data for the whole life cycle of Lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 369(C).
    14. Chai, Xuqing & Li, Shihao & Liang, Fengwei, 2024. "A novel battery SOC estimation method based on random search optimized LSTM neural network," Energy, Elsevier, vol. 306(C).
    15. Dapai Shi & Jingyuan Zhao & Zhenghong Wang & Heng Zhao & Chika Eze & Junbin Wang & Yubo Lian & Andrew F. Burke, 2023. "Cloud-Based Deep Learning for Co-Estimation of Battery State of Charge and State of Health," Energies, MDPI, vol. 16(9), pages 1-19, April.
    16. Yang, Kuo & Tang, Yugui & Zhang, Shujing & Zhang, Zhen, 2022. "A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism," Energy, Elsevier, vol. 244(PB).
    17. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Li, Huan & Xu, Wenhua & Fernandez, Carlos, 2022. "An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 260(C).
    18. Tian, Jinpeng & Xiong, Rui & Shen, Weixiang & Lu, Jiahuan, 2021. "State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach," Applied Energy, Elsevier, vol. 291(C).
    19. Bragadeshwaran Ashok & Chidambaram Kannan & Byron Mason & Sathiaseelan Denis Ashok & Vairavasundaram Indragandhi & Darsh Patel & Atharva Sanjay Wagh & Arnav Jain & Chellapan Kavitha, 2022. "Towards Safer and Smarter Design for Lithium-Ion-Battery-Powered Electric Vehicles: A Comprehensive Review on Control Strategy Architecture of Battery Management System," Energies, MDPI, vol. 15(12), pages 1-44, June.
    20. Zhang, Qiang & Wan, Guangwei & Li, Chaoran & Li, Jianke & Liu, Xiaori & Li, Menghan, 2024. "State of charge estimation for Li-ion battery during dynamic driving process based on dual-channel deep learning methods and conditional judgement," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4403-:d:1159268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.