IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v130y2020ics1364032120302173.html
   My bibliography  Save this article

Review of two types of surface modification on pool boiling enhancement: Passive and active

Author

Listed:
  • Li, Wei
  • Dai, Renkun
  • Zeng, Min
  • Wang, Qiuwang

Abstract

Many methods for enhancing nucleate pool boiling have been proposed to improve the two-phase heat transfer performance in recent years. This article offers a comprehensive comment from published literature in terms of the surface modification of reinforcing heat transfer. Two types of surface modification regarding enhancement of boiling heat transfer coefficient and critical heat flux are categorized for the first time in this paper. The first and most widespread way is artificially changing the characteristics of the surface in advance to improve boiling performance, such as structured surface and surface coating with nanoparticles, namely, the “passive” technology. Oppositely, the “active” one on boiling enhancement seems to have more potential for development and it is favored by some researchers. In brief, the transformation of geometrical shape or characteristics such as wettability spontaneously occurs during boiling, the critical heat flux would thus be delayed. The heat transfer performance, as a result, would be significantly ameliorated. This kind of “smart surface” is usually made up of specific shape memory alloy, polymers, metallic oxides, etc. The mechanisms of boiling enhancement regarding modified surfaces are also reviewed, the capillary wicking, for instance, plays vital role in it. Moreover, various surfaces are presented with emphasis on their advantages/disadvantages. Through the analysis and comparison of the two kinds of modified surfaces, this review also points out some challenges existing in the current studies concerning this topic, such as numerical study, which are worth solving or optimizing to efficiently and economically improve the boiling heat transfer in future.

Suggested Citation

  • Li, Wei & Dai, Renkun & Zeng, Min & Wang, Qiuwang, 2020. "Review of two types of surface modification on pool boiling enhancement: Passive and active," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
  • Handle: RePEc:eee:rensus:v:130:y:2020:i:c:s1364032120302173
    DOI: 10.1016/j.rser.2020.109926
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120302173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.109926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dadhich, Manish & Prajapati, Om Shankar, 2019. "A brief review on factors affecting flow and pool boiling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 607-625.
    2. Wu, Zan & Cao, Zhen & Sundén, Bengt, 2019. "Saturated pool boiling heat transfer of acetone and HFE-7200 on modified surfaces by electrophoretic and electrochemical deposition," Applied Energy, Elsevier, vol. 249(C), pages 286-299.
    3. Takata, Y. & Hidaka, S. & Cao, J.M. & Nakamura, T. & Yamamoto, H. & Masuda, M. & Ito, T., 2005. "Effect of surface wettability on boiling and evaporation," Energy, Elsevier, vol. 30(2), pages 209-220.
    4. Fang, Xiande & Chen, Yafeng & Zhang, Helei & Chen, Weiwei & Dong, Anqi & Wang, Run, 2016. "Heat transfer and critical heat flux of nanofluid boiling: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 924-940.
    5. Tsang, Chi Him Alpha & Huang, Haibao & Xuan, Jin & Wang, Huizhi & Leung, D.Y.C., 2020. "Graphene materials in green energy applications: Recent development and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    6. Klinar, K. & Kitanovski, A., 2020. "Thermal control elements for caloric energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    7. Jothi Prakash, C.G. & Prasanth, R., 2018. "Enhanced boiling heat transfer by nano structured surfaces and nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4028-4043.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Evgeny A. Chinnov & Sergey Ya. Khmel & Victor Yu. Vladimirov & Aleksey I. Safonov & Vitaliy V. Semionov & Kirill A. Emelyanenko & Alexandre M. Emelyanenko & Ludmila B. Boinovich, 2022. "Boiling Heat Transfer Enhancement on Biphilic Surfaces," Energies, MDPI, vol. 15(19), pages 1-19, October.
    3. Chun Shen & Dongjun Xu & Bo Wei & Chengchun Zhang & Shenghua Du & Tian Zhao, 2023. "Investigation of the Enhancement of Boiling Heat Transfer Performance Utilizing a Hybrid Wetting Surface with a Macroscopic Millimeter-Scale Pillar Array," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    4. Xu, Nian & Liu, Zilong & Yu, Xinyu & Gao, Jian & Chu, Huaqiang, 2024. "Processes, models and the influencing factors for enhanced boiling heat transfer in porous structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    5. Jéssica Martha Nunes & Jeferson Diehl de Oliveira & Jacqueline Biancon Copetti & Sameer Sheshrao Gajghate & Utsab Banerjee & Sushanta K. Mitra & Elaine Maria Cardoso, 2023. "Thermal Performance Analysis of Micro Pin Fin Heat Sinks under Different Flow Conditions," Energies, MDPI, vol. 16(7), pages 1-13, March.
    6. Tang, Heng & Xia, Liangfeng & Tang, Yong & Weng, Changxing & Hu, Zuohuan & Wu, Xiaoyu & Sun, Yalong, 2022. "Fabrication and pool boiling performance assessment of microgroove array surfaces with secondary micro-structures for high power applications," Renewable Energy, Elsevier, vol. 187(C), pages 790-800.
    7. Qin, Siyu & Ji, Ruiyang & Miao, Chengyu & Jin, Liwen & Yang, Chun & Meng, Xiangzhao, 2024. "Review of enhancing boiling and condensation heat transfer: Surface modification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. Sun, Yalong & Tang, Yong & Zhang, Shiwei & Yuan, Wei & Tang, Heng, 2022. "A review on fabrication and pool boiling enhancement of three-dimensional complex structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Yuan, Xiao & Du, Yanping & Su, Jing, 2022. "Approaches and potentials for pool boiling enhancement with superhigh heat flux on responsive smart surfaces: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yalong & Tang, Yong & Zhang, Shiwei & Yuan, Wei & Tang, Heng, 2022. "A review on fabrication and pool boiling enhancement of three-dimensional complex structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Chen, Jingtan & Ahmad, Shakeel & Cai, Junjie & Liu, Huaqiang & Lau, Kwun Ting & Zhao, Jiyun, 2021. "Latest progress on nanotechnology aided boiling heat transfer enhancement: A review," Energy, Elsevier, vol. 215(PA).
    3. Hesam Moghadasi & Navid Malekian & Hamid Saffari & Amir Mirza Gheitaghy & Guo Qi Zhang, 2020. "Recent Advances in the Critical Heat Flux Amelioration of Pool Boiling Surfaces Using Metal Oxide Nanoparticle Deposition," Energies, MDPI, vol. 13(15), pages 1-49, August.
    4. Yao, Shuting & Wang, Jiansheng & Liu, Xueling, 2021. "Role of wall-fluid interaction and rough morphology in heat and momentum exchange in nanochannel," Applied Energy, Elsevier, vol. 298(C).
    5. Shoukat A. Khan & Muataz A. Atieh & Muammer Koç, 2018. "Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-30, November.
    6. Luca Cirillo & Adriana Greco & Claudia Masselli, 2023. "A Solid-to-Solid 2D Model of a Magnetocaloric Cooler with Thermal Diodes: A Sustainable Way for Refrigerating," Energies, MDPI, vol. 16(13), pages 1-17, July.
    7. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
    8. Hak Rae Cho & Su Cheong Park & Doyeon Kim & Hyeong-min Joo & Dong In Yu, 2021. "Experimental Study on Pool Boiling on Hydrophilic Micro/Nanotextured Surfaces with Hydrophobic Patterns," Energies, MDPI, vol. 14(22), pages 1-13, November.
    9. Mechili, Maria & Vaitsis, Christos & Argirusis, Nikolaos & Pandis, Pavlos K. & Sourkouni, Georgia & Argirusis, Christos, 2022. "Research progress in transition metal oxide based bifunctional electrocatalysts for aqueous electrically rechargeable zinc-air batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Wei-Tao Wu & Mehrdad Massoudi & Hongbin Yan, 2017. "Heat Transfer and Flow of Nanofluids in a Y-Type Intersection Channel with Multiple Pulsations: A Numerical Study," Energies, MDPI, vol. 10(4), pages 1-18, April.
    11. Hu, Haitao & Zhao, Yaxin & Li, Yuhan, 2023. "Research progress on flow and heat transfer characteristics of fluids in metal foams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    12. Zhishun Wei & Tharishinny Raja Mogan & Kunlei Wang & Marcin Janczarek & Ewa Kowalska, 2021. "Morphology-Governed Performance of Multi-Dimensional Photocatalysts for Hydrogen Generation," Energies, MDPI, vol. 14(21), pages 1-37, November.
    13. Rui, Ziliang & Sun, Hong & Ma, Jie & Peng, Hao, 2023. "Experimental study and prediction on the thermal management performance of SDS aqueous solution based microchannel flow boiling system," Energy, Elsevier, vol. 282(C).
    14. Jothi Prakash, C.G. & Prasanth, R., 2018. "Enhanced boiling heat transfer by nano structured surfaces and nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4028-4043.
    15. Abdelkareem, Mohammad Ali & Abbas, Qaisar & Sayed, Enas Taha & Shehata, N. & Parambath, J.B.M. & Alami, Abdul Hai & Olabi, A.G., 2024. "Recent advances on metal-organic frameworks (MOFs) and their applications in energy conversion devices: Comprehensive review," Energy, Elsevier, vol. 299(C).
    16. Adam Starowicz & Marcin Zieliński & Paulina Rusanowska & Marcin Dębowski, 2023. "Microbial Fuel Cell Performance Boost through the Use of Graphene and Its Modifications—Review," Energies, MDPI, vol. 16(2), pages 1-13, January.
    17. Shixian Zhang & Yuheng Fu & Xinxing Nie & Chenjian Li & Youshuang Zhou & Yaqi Wang & Juan Yi & Wenlai Xia & Yiheng Song & Qi Li & Chuanxi Xiong & Suxin Qian & Quanling Yang & Qing Wang, 2024. "Shearo-caloric effect enhances elastocaloric responses in polymer composites for solid-state cooling," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Zhang, Ji & Zhu, Xiaowei & Mondejar, Maria E. & Haglind, Fredrik, 2019. "A review of heat transfer enhancement techniques in plate heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 305-328.
    19. Shixian Zhang & Quanling Yang & Chenjian Li & Yuheng Fu & Huaqing Zhang & Zhiwei Ye & Xingnan Zhou & Qi Li & Tao Wang & Shan Wang & Wenqing Zhang & Chuanxi Xiong & Qing Wang, 2022. "Solid-state cooling by elastocaloric polymer with uniform chain-lengths," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    20. Cerciello, Francesca & Coppola, Antonio & Lacovig, Paolo & Senneca, Osvalda & Salatino, Piero, 2021. "Characterization of surface-oxides on char under periodically changing oxidation/desorption conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:130:y:2020:i:c:s1364032120302173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.