IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p4026-d394309.html
   My bibliography  Save this article

Recent Advances in the Critical Heat Flux Amelioration of Pool Boiling Surfaces Using Metal Oxide Nanoparticle Deposition

Author

Listed:
  • Hesam Moghadasi

    (School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran)

  • Navid Malekian

    (School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran)

  • Hamid Saffari

    (School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran)

  • Amir Mirza Gheitaghy

    (Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands)

  • Guo Qi Zhang

    (Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands)

Abstract

Pool boiling is an effective heat transfer process in a wide range of applications related to energy conversion, including power generation, solar collectors, cooling systems, refrigeration and air conditioning. By considering the broad range of applications, any improvement in higher heat-removal yield can ameliorate the ultimate heat usage and delay or even avoid the occurrence of system failures, thus leading to remarkable economic, environmental and energy efficiency outcomes. A century of research on ameliorating critical heat flux (CHF) has focused on altering the boiling surface characteristics, such as its nucleation site density, wettability, wickability and heat transfer area, by many innovative techniques. Due to the remarkable interest of using nanoparticle deposition on boiling surfaces, this review is targeted towards investigating whether or not metal oxide nanoparticles can modify surface characteristics to enhance the CHF. The influence of nanoparticle material, thermo-physical properties, concentration, shape, and size are categorized, and the inconsistency or contradictions of the existing research results are recognized. In the following, nanoparticle deposition methods are presented to provide a worthwhile alternative to deposition rather than nanofluid boiling. Furthermore, possible mechanisms and models are identified to explain the amelioration results. Finally, the present status of nanoparticle deposition for CHF amelioration, along with their future challenges, amelioration potentials, limitations, and their possible industrial implementation, is discussed.

Suggested Citation

  • Hesam Moghadasi & Navid Malekian & Hamid Saffari & Amir Mirza Gheitaghy & Guo Qi Zhang, 2020. "Recent Advances in the Critical Heat Flux Amelioration of Pool Boiling Surfaces Using Metal Oxide Nanoparticle Deposition," Energies, MDPI, vol. 13(15), pages 1-49, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:4026-:d:394309
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/4026/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/4026/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Łukasz J. Orman & Norbert Radek & Jacek Pietraszek & Marcin Szczepaniak, 2020. "Analysis of Enhanced Pool Boiling Heat Transfer on Laser—Textured Surfaces," Energies, MDPI, vol. 13(11), pages 1-19, May.
    2. Jothi Prakash, C.G. & Prasanth, R., 2018. "Enhanced boiling heat transfer by nano structured surfaces and nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4028-4043.
    3. Abhishek Kumar & Kuo-Shu Hung & Chi-Chuan Wang, 2020. "Nucleate Pool Boiling Heat Transfer from High-Flux Tube with Dielectric Fluid HFE-7200," Energies, MDPI, vol. 13(9), pages 1-16, May.
    4. Kasaeian, Alibakhsh & Eshghi, Amin Toghi & Sameti, Mohammad, 2015. "A review on the applications of nanofluids in solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 584-598.
    5. Saidur, R. & Leong, K.Y. & Mohammad, H.A., 2011. "A review on applications and challenges of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1646-1668, April.
    6. Devendiran, Dhinesh Kumar & Amirtham, Valan Arasu, 2016. "A review on preparation, characterization, properties and applications of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 21-40.
    7. Takata, Y. & Hidaka, S. & Cao, J.M. & Nakamura, T. & Yamamoto, H. & Masuda, M. & Ito, T., 2005. "Effect of surface wettability on boiling and evaporation," Energy, Elsevier, vol. 30(2), pages 209-220.
    8. Navdeep Singh Dhillon & Jacopo Buongiorno & Kripa K. Varanasi, 2015. "Critical heat flux maxima during boiling crisis on textured surfaces," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    9. Shahrul, I.M. & Mahbubul, I.M. & Khaleduzzaman, S.S. & Saidur, R. & Sabri, M.F.M., 2014. "A comparative review on the specific heat of nanofluids for energy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 88-98.
    10. Shoukat A. Khan & Muataz A. Atieh & Muammer Koç, 2018. "Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-30, November.
    11. Kestin, J. & Wakeham, W.A., 1978. "A contribution to the theory of the transient hot-wire technique for thermal conductivity measurements," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 92(1), pages 102-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janusz T. Cieśliński & Katarzyna Ronewicz, 2021. "Burnout Investigation of Small Diameter Tubes Immersed in Nanofluids," Energies, MDPI, vol. 14(13), pages 1-26, June.
    2. Ladislav Suk & Taron Petrosyan & Kamil Stevanka & Daniel Vlcek & Pavel Gejdos, 2020. "Experimental Investigation of Critical Heat Flux on Different Surfaces at Low Pressure and Low Flow," Energies, MDPI, vol. 13(19), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    2. Eleonora Ponticorvo & Mariagrazia Iuliano & Claudia Cirillo & Angelo Maiorino & Ciro Aprea & Maria Sarno, 2022. "Fouling Behavior and Dispersion Stability of Nanoparticle-Based Refrigeration Fluid," Energies, MDPI, vol. 15(9), pages 1-21, April.
    3. Ahmad, S.H.A. & Saidur, R. & Mahbubul, I.M. & Al-Sulaiman, F.A., 2017. "Optical properties of various nanofluids used in solar collector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1014-1030.
    4. Chen, Jingtan & Ahmad, Shakeel & Cai, Junjie & Liu, Huaqiang & Lau, Kwun Ting & Zhao, Jiyun, 2021. "Latest progress on nanotechnology aided boiling heat transfer enhancement: A review," Energy, Elsevier, vol. 215(PA).
    5. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    6. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    7. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    8. Chdil, O. & Bikerouin, M. & Balli, M. & Mounkachi, O., 2023. "New horizons in magnetic refrigeration using artificial intelligence," Applied Energy, Elsevier, vol. 335(C).
    9. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Li, Wei & Dai, Renkun & Zeng, Min & Wang, Qiuwang, 2020. "Review of two types of surface modification on pool boiling enhancement: Passive and active," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    11. Azmi, W.H. & Sharma, K.V. & Mamat, Rizalman & Najafi, G. & Mohamad, M.S., 2016. "The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1046-1058.
    12. Yuan, Xiao & Du, Yanping & Su, Jing, 2022. "Approaches and potentials for pool boiling enhancement with superhigh heat flux on responsive smart surfaces: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    13. Denis Kuznetsov & Aleksandr Pavlenko, 2022. "Heat Transfer during Nitrogen Boiling on Surfaces Modified by Microarc Oxidation," Energies, MDPI, vol. 15(16), pages 1-14, August.
    14. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    15. Leong, K.Y. & Ku Ahmad, K.Z. & Ong, Hwai Chyuan & Ghazali, M.J. & Baharum, Azizah, 2017. "Synthesis and thermal conductivity characteristic of hybrid nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 868-878.
    16. Islam, Mohammad Rafiqul & Shabani, Bahman & Rosengarten, Gary, 2016. "Nanofluids to improve the performance of PEM fuel cell cooling systems: A theoretical approach," Applied Energy, Elsevier, vol. 178(C), pages 660-671.
    17. Sun, Yalong & Tang, Yong & Zhang, Shiwei & Yuan, Wei & Tang, Heng, 2022. "A review on fabrication and pool boiling enhancement of three-dimensional complex structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Ambreen, Tehmina & Kim, Man-Hoe, 2018. "Heat transfer and pressure drop correlations of nanofluids: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 564-583.
    19. Hussein, Ahmed Kadhim, 2016. "Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 767-792.
    20. Hassani, Samir & Taylor, Robert A. & Mekhilef, Saad & Saidur, R., 2016. "A cascade nanofluid-based PV/T system with optimized optical and thermal properties," Energy, Elsevier, vol. 112(C), pages 963-975.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:4026-:d:394309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.