IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3189-d183488.html
   My bibliography  Save this article

Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review

Author

Listed:
  • Shoukat A. Khan

    (Sustainable Development Division (SDD), College of Science and Engineering (CSE), Hamad bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha P.O. Box 5825, Qatar)

  • Muataz A. Atieh

    (Qatar Environment and Energy Research Institute (QEERI), Hamad bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha P.O. Box 5825, Qatar)

  • Muammer Koç

    (Sustainable Development Division (SDD), College of Science and Engineering (CSE), Hamad bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha P.O. Box 5825, Qatar)

Abstract

Nucleate boiling is a phase change heat transfer process with a wide range of applications i.e., steam power plants, thermal desalination, heat pipes, domestic heating and cooling, refrigeration and air-conditioning, electronic cooling, cooling of turbo-machinery, waste heat recovery and much more. Due to its quite broad range of applications, any improvement in this area leads to significant economic, environmental and energy efficiency outcomes. This paper presents a comprehensive review and critical analysis on the recent developments in the area of micro-nano scale coating technologies, materials, and their applications for modification of surface geometry and chemistry, which play an important role in the enhancement of nucleate boiling heat transfer. In many industrial applications boiling is a surface phenomenon, which depends upon its variables such as surface area, thermal conductivity, wettability, porosity, and roughness. Compared to subtractive methods, the surface coating is more versatile in material selection, simple, quick, robust in implementation and is quite functional to apply to already installed systems. The present status of these techniques for boiling heat transfer enhancement, along with their future challenges, enhancement potentials, limitations, and their possible industrial implementation are also discussed in this paper.

Suggested Citation

  • Shoukat A. Khan & Muataz A. Atieh & Muammer Koç, 2018. "Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-30, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3189-:d:183488
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3189/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3189/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chan, C.W. & Siqueiros, E. & Ling-Chin, J. & Royapoor, M. & Roskilly, A.P., 2015. "Heat utilisation technologies: A critical review of heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 615-627.
    2. Lazarus Godson Asirvatham & Nandigana Vishal & Senthil Kumar Gangatharan & Dhasan Mohan Lal, 2009. "Experimental Study on Forced Convective Heat Transfer with Low Volume Fraction of CuO/Water Nanofluid," Energies, MDPI, vol. 2(1), pages 1-23, March.
    3. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2014. "Performance analysis of turbulent convection heat transfer of Al2O3 water-nanofluid in circular tubes at constant wall temperature," Energy, Elsevier, vol. 77(C), pages 403-413.
    4. Mahesh Suresh Patil & Jae-Hyeong Seo & Suk-Ju Kang & Moo-Yeon Lee, 2016. "Review on Synthesis, Thermo-Physical Property, and Heat Transfer Mechanism of Nanofluids," Energies, MDPI, vol. 9(10), pages 1-17, October.
    5. Murshed, S.M. Sohel & Vereen, Keon & Strayer, Darton & Kumar, Ranganathan, 2010. "An experimental investigation of bubble nucleation of a refrigerant in pressurized boiling flows," Energy, Elsevier, vol. 35(12), pages 5143-5150.
    6. Sureshkumar, R. & Mohideen, S. Tharves & Nethaji, N., 2013. "Heat transfer characteristics of nanofluids in heat pipes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 397-410.
    7. Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
    8. Jothi Prakash, C.G. & Prasanth, R., 2018. "Enhanced boiling heat transfer by nano structured surfaces and nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4028-4043.
    9. Sedmak, Ivan & Urbančič, Iztok & Podlipec, Rok & Štrancar, Janez & Mortier, Michel & Golobič, Iztok, 2016. "Submicron thermal imaging of a nucleate boiling process using fluorescence microscopy," Energy, Elsevier, vol. 109(C), pages 436-445.
    10. Collado, Francisco J., 2005. "The law of stable equilibrium and the entropy-based boiling curve for flow boiling," Energy, Elsevier, vol. 30(6), pages 807-819.
    11. Takata, Y. & Hidaka, S. & Cao, J.M. & Nakamura, T. & Yamamoto, H. & Masuda, M. & Ito, T., 2005. "Effect of surface wettability on boiling and evaporation," Energy, Elsevier, vol. 30(2), pages 209-220.
    12. Dixit, Tisha & Ghosh, Indranil, 2015. "Review of micro- and mini-channel heat sinks and heat exchangers for single phase fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1298-1311.
    13. Wei-Tao Wu & Mehrdad Massoudi & Hongbin Yan, 2017. "Heat Transfer and Flow of Nanofluids in a Y-Type Intersection Channel with Multiple Pulsations: A Numerical Study," Energies, MDPI, vol. 10(4), pages 1-18, April.
    14. Mohanty, Rajiva Lochan & Das, Mihir Kumar, 2017. "A critical review on bubble dynamics parameters influencing boiling heat transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 466-494.
    15. Shin, Sangwoo & Choi, Geehong & Kim, Beom Seok & Cho, Hyung Hee, 2014. "Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid," Energy, Elsevier, vol. 76(C), pages 428-435.
    16. Yubai Li & Hongbin Yan & Mehrdad Massoudi & Wei-Tao Wu, 2017. "Effects of Anisotropic Thermal Conductivity and Lorentz Force on the Flow and Heat Transfer of a Ferro-Nanofluid in a Magnetic Field," Energies, MDPI, vol. 10(7), pages 1-19, July.
    17. Zhang, Xiaoyan & Zhang, Jin & Ji, Haiwei & Zhao, Dengyu, 2015. "Heat transfer enhancement and pressure drop performance for R417A flow boiling in internally grooved tubes," Energy, Elsevier, vol. 86(C), pages 446-454.
    18. Li, TingXian & Lee, Ju-Hyuk & Wang, RuZhu & Kang, Yong Tae, 2013. "Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes," Energy, Elsevier, vol. 55(C), pages 752-761.
    19. Revellin, Rémi & Lips, Stéphane & Khandekar, Sameer & Bonjour, Jocelyn, 2009. "Local entropy generation for saturated two-phase flow," Energy, Elsevier, vol. 34(9), pages 1113-1121.
    20. Anastasios Georgoulas & Manolia Andredaki & Marco Marengo, 2017. "An Enhanced VOF Method Coupled with Heat Transfer and Phase Change to Characterise Bubble Detachment in Saturated Pool Boiling," Energies, MDPI, vol. 10(3), pages 1-35, February.
    21. Paul, G. & Chopkar, M. & Manna, I. & Das, P.K., 2010. "Techniques for measuring the thermal conductivity of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1913-1924, September.
    22. Mohammed, H.A. & Bhaskaran, G. & Shuaib, N.H. & Saidur, R., 2011. "Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1502-1512, April.
    23. Mohammed Adham, Ahmed & Mohd-Ghazali, Normah & Ahmad, Robiah, 2013. "Thermal and hydrodynamic analysis of microchannel heat sinks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 614-622.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Chen & Xingchen Li & Runfeng Xiao & Kunpeng Lv & Xue Yang & Yu Hou, 2020. "Flow Boiling of Low-Pressure Water in Microchannels of Large Aspect Ratio," Energies, MDPI, vol. 13(11), pages 1-21, May.
    2. Khan, Shoukat Alim & Bicer, Yusuf & Al-Ghamdi, Sami G. & Koç, Muammer, 2020. "Performance evaluation of self-cooling concentrating photovoltaics systems using nucleate boiling heat transfer," Renewable Energy, Elsevier, vol. 160(C), pages 1081-1095.
    3. Chen, Jingtan & Ahmad, Shakeel & Cai, Junjie & Liu, Huaqiang & Lau, Kwun Ting & Zhao, Jiyun, 2021. "Latest progress on nanotechnology aided boiling heat transfer enhancement: A review," Energy, Elsevier, vol. 215(PA).
    4. Hesam Moghadasi & Navid Malekian & Hamid Saffari & Amir Mirza Gheitaghy & Guo Qi Zhang, 2020. "Recent Advances in the Critical Heat Flux Amelioration of Pool Boiling Surfaces Using Metal Oxide Nanoparticle Deposition," Energies, MDPI, vol. 13(15), pages 1-49, August.
    5. Yang, Jiaqi & Ma, Yuan & Wang, Wujun, 2023. "An analytical method for quickly evaluating the performances of refractory alloys in sCO2 Brayton cycle applications," Energy, Elsevier, vol. 283(C).
    6. Ladislav Suk & Taron Petrosyan & Kamil Stevanka & Daniel Vlcek & Pavel Gejdos, 2020. "Experimental Investigation of Critical Heat Flux on Different Surfaces at Low Pressure and Low Flow," Energies, MDPI, vol. 13(19), pages 1-23, October.
    7. Alexander V. Fedoseev & Mikhail V. Salnikov & Anastasiya E. Ostapchenko & Anton S. Surtaev, 2022. "Lattice Boltzmann Simulation of Optimal Biphilic Surface Configuration to Enhance Boiling Heat Transfer," Energies, MDPI, vol. 15(21), pages 1-14, November.
    8. Alexander Igolnikov & Pavel Skripov, 2023. "Characteristic Features of Heat Transfer in the Course of Decay of Unstable Binary Mixture," Energies, MDPI, vol. 16(5), pages 1-15, February.
    9. Łukasz J. Orman & Norbert Radek & Jacek Pietraszek & Marcin Szczepaniak, 2020. "Analysis of Enhanced Pool Boiling Heat Transfer on Laser—Textured Surfaces," Energies, MDPI, vol. 13(11), pages 1-19, May.
    10. Maruoka, Nobuhiro & Tsutsumi, Taichi & Ito, Akihisa & Hayasaka, Miho & Nogami, Hiroshi, 2020. "Heat release characteristics of a latent heat storage heat exchanger by scraping the solidified phase change material layer," Energy, Elsevier, vol. 205(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussien, Ahmed A. & Abdullah, Mohd Z. & Al-Nimr, Moh’d A., 2016. "Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications," Applied Energy, Elsevier, vol. 164(C), pages 733-755.
    2. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Zhao, Ningbo & Li, Shuying & Yang, Jialong, 2016. "A review on nanofluids: Data-driven modeling of thermalphysical properties and the application in automotive radiator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 596-616.
    4. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    5. Azharul Karim & M. Masum Billah & M. T. Talukder Newton & M. Mustafizur Rahman, 2017. "Influence of the Periodicity of Sinusoidal Boundary Condition on the Unsteady Mixed Convection within a Square Enclosure Using an Ag–Water Nanofluid," Energies, MDPI, vol. 10(12), pages 1-21, December.
    6. Mushtaq T. Al-Asadi & Hussein A. Mohammed & Mark C. T. Wilson, 2022. "Heat Transfer Characteristics of Conventional Fluids and Nanofluids in Micro-Channels with Vortex Generators: A Review," Energies, MDPI, vol. 15(3), pages 1-34, February.
    7. Yubai Li & Hongbin Yan & Mehrdad Massoudi & Wei-Tao Wu, 2017. "Effects of Anisotropic Thermal Conductivity and Lorentz Force on the Flow and Heat Transfer of a Ferro-Nanofluid in a Magnetic Field," Energies, MDPI, vol. 10(7), pages 1-19, July.
    8. Mikhail A. Sheremet & Hakan F. Oztop & Dmitriy V. Gvozdyakov & Mohamed E. Ali, 2018. "Impacts of Heat-Conducting Solid Wall and Heat-Generating Element on Free Convection of Al 2 O 3 /H 2 O Nanofluid in a Cavity with Open Border," Energies, MDPI, vol. 11(12), pages 1-17, December.
    9. Jafari, Davoud & Wits, Wessel W., 2018. "The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 420-442.
    10. Xiao-Hui Sun & Hongbin Yan & Mehrdad Massoudi & Zhi-Hua Chen & Wei-Tao Wu, 2018. "Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger," Energies, MDPI, vol. 11(4), pages 1-18, April.
    11. Wei-Tao Wu & Mehrdad Massoudi & Hongbin Yan, 2017. "Heat Transfer and Flow of Nanofluids in a Y-Type Intersection Channel with Multiple Pulsations: A Numerical Study," Energies, MDPI, vol. 10(4), pages 1-18, April.
    12. Li, Wei & Dai, Renkun & Zeng, Min & Wang, Qiuwang, 2020. "Review of two types of surface modification on pool boiling enhancement: Passive and active," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    13. Najiha, M.S. & Rahman, M.M. & Yusoff, A.R., 2016. "Environmental impacts and hazards associated with metal working fluids and recent advances in the sustainable systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1008-1031.
    14. Garoosi, Faroogh & Hoseininejad, Faraz & Rashidi, Mohammad Mehdi, 2016. "Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids," Energy, Elsevier, vol. 109(C), pages 664-678.
    15. Hesam Moghadasi & Navid Malekian & Hamid Saffari & Amir Mirza Gheitaghy & Guo Qi Zhang, 2020. "Recent Advances in the Critical Heat Flux Amelioration of Pool Boiling Surfaces Using Metal Oxide Nanoparticle Deposition," Energies, MDPI, vol. 13(15), pages 1-49, August.
    16. Piotr Bogusław Jasiński & Michał Jan Kowalczyk & Artur Romaniak & Bartosz Warwas & Damian Obidowski & Artur Gutkowski, 2021. "Investigation of Thermal-Flow Characteristics of Pipes with Helical Micro-Fins of Variable Height," Energies, MDPI, vol. 14(8), pages 1-18, April.
    17. Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    18. Chandrasekar, M. & Suresh, S. & Senthilkumar, T., 2012. "Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3917-3938.
    19. Vanaki, Sh.M. & Ganesan, P. & Mohammed, H.A., 2016. "Numerical study of convective heat transfer of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1212-1239.
    20. Dixit, Tisha & Ghosh, Indranil, 2015. "Review of micro- and mini-channel heat sinks and heat exchangers for single phase fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1298-1311.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3189-:d:183488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.