IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v187y2022icp790-800.html
   My bibliography  Save this article

Fabrication and pool boiling performance assessment of microgroove array surfaces with secondary micro-structures for high power applications

Author

Listed:
  • Tang, Heng
  • Xia, Liangfeng
  • Tang, Yong
  • Weng, Changxing
  • Hu, Zuohuan
  • Wu, Xiaoyu
  • Sun, Yalong

Abstract

Microstructure surface is an effective method to improve the boiling performance and has the feasibility of application in solving the heat dissipation problem of high-power electronics. This study develops microgroove array surfaces with secondary micro-structures (MSs) by two perpendicular electrical discharge machining processes to further maximize the boiling performance. Wavy electrodes composed of copper and tin foils with varying thickness and quantity are prepared to fabricate MSs with different structural parameters, and it is confirmed that the enhancement ratio of MSs on boiling performance increases with the increase of number and width of secondary microgrooves. The wall superheats at the onset of nucleate boiling of MSs are 45.3%–62.1% lower than that of smooth copper plate, and an outstanding critical heat flux of 2592.4 kW/m2 with a maximum heat transfer coefficient of 138.6 kW/m2∙oC are achieved. The greatly enhanced boiling performance is attributed to the microgroove arrays and the secondary micro-structures, i.e., micro fins, ablation craters, and micropillars, which provide more nucleation sites and larger heat transfer area. Finally, the cell performance enhancement of concentrated photovoltaics using the nucleate boiling of MSs as thermal management solutions is evaluated as an example of its potential applications.

Suggested Citation

  • Tang, Heng & Xia, Liangfeng & Tang, Yong & Weng, Changxing & Hu, Zuohuan & Wu, Xiaoyu & Sun, Yalong, 2022. "Fabrication and pool boiling performance assessment of microgroove array surfaces with secondary micro-structures for high power applications," Renewable Energy, Elsevier, vol. 187(C), pages 790-800.
  • Handle: RePEc:eee:renene:v:187:y:2022:i:c:p:790-800
    DOI: 10.1016/j.renene.2022.01.115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122001252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.01.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S. & Rodríguez, José M. & Muñoz, Antonio, 2017. "Cost analysis of solar thermal power generators based on parabolic dish and micro gas turbine: Manufacturing, transportation and installation," Applied Energy, Elsevier, vol. 194(C), pages 108-122.
    2. Wu, Zan & Cao, Zhen & Sundén, Bengt, 2019. "Saturated pool boiling heat transfer of acetone and HFE-7200 on modified surfaces by electrophoretic and electrochemical deposition," Applied Energy, Elsevier, vol. 249(C), pages 286-299.
    3. Navdeep Singh Dhillon & Jacopo Buongiorno & Kripa K. Varanasi, 2015. "Critical heat flux maxima during boiling crisis on textured surfaces," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    4. Jin, Yabin & Fang, Jiabin & Wei, Jinjia & Wang, Xinhe, 2018. "A comprehensive model of a cavity receiver to achieve uniform heat flux using air-carbon particles mixture," Applied Energy, Elsevier, vol. 220(C), pages 616-628.
    5. Ying Cui & Zihao Qin & Huan Wu & Man Li & Yongjie Hu, 2021. "Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    6. Tang, Heng & Tang, Yong & Wan, Zhenping & Li, Jie & Yuan, Wei & Lu, Longsheng & Li, Yong & Tang, Kairui, 2018. "Review of applications and developments of ultra-thin micro heat pipes for electronic cooling," Applied Energy, Elsevier, vol. 223(C), pages 383-400.
    7. Li, Wei & Dai, Renkun & Zeng, Min & Wang, Qiuwang, 2020. "Review of two types of surface modification on pool boiling enhancement: Passive and active," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Chunxia & Sun, Yalong & Tang, Heng & Zhang, Shiwei & Yuan, Wei & Zhu, Likuan & Tang, Yong, 2024. "A review on the liquid cooling thermal management system of lithium-ion batteries," Applied Energy, Elsevier, vol. 375(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yalong & Tang, Yong & Zhang, Shiwei & Yuan, Wei & Tang, Heng, 2022. "A review on fabrication and pool boiling enhancement of three-dimensional complex structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Qin, Siyu & Ji, Ruiyang & Miao, Chengyu & Jin, Liwen & Yang, Chun & Meng, Xiangzhao, 2024. "Review of enhancing boiling and condensation heat transfer: Surface modification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Yuan, Xiao & Du, Yanping & Su, Jing, 2022. "Approaches and potentials for pool boiling enhancement with superhigh heat flux on responsive smart surfaces: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Wu, Zan & Cao, Zhen & Sundén, Bengt, 2019. "Saturated pool boiling heat transfer of acetone and HFE-7200 on modified surfaces by electrophoretic and electrochemical deposition," Applied Energy, Elsevier, vol. 249(C), pages 286-299.
    6. Chen, Gong & Yan, Caiman & Yin, Shubin & Tang, Yong & Yuan, Wei & Zhang, Shiwei, 2024. "Vapor-liquid coplanar structure enables high thermal conductive and extremely ultrathin vapor chamber," Energy, Elsevier, vol. 301(C).
    7. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Jéssica Martha Nunes & Jeferson Diehl de Oliveira & Jacqueline Biancon Copetti & Sameer Sheshrao Gajghate & Utsab Banerjee & Sushanta K. Mitra & Elaine Maria Cardoso, 2023. "Thermal Performance Analysis of Micro Pin Fin Heat Sinks under Different Flow Conditions," Energies, MDPI, vol. 16(7), pages 1-13, March.
    9. Hak Rae Cho & Su Cheong Park & Doyeon Kim & Hyeong-min Joo & Dong In Yu, 2021. "Experimental Study on Pool Boiling on Hydrophilic Micro/Nanotextured Surfaces with Hydrophobic Patterns," Energies, MDPI, vol. 14(22), pages 1-13, November.
    10. Chen, Gong & Tang, Yong & Duan, Longhua & Tang, Heng & Zhong, Guisheng & Wan, Zhenping & Zhang, Shiwei & Fu, Ting, 2020. "Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors," Renewable Energy, Elsevier, vol. 146(C), pages 2234-2242.
    11. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Zhang, Shiwei & Chen, Jieling & Sun, Yalong & Li, Jie & Zeng, Jian & Yuan, Wei & Tang, Yong, 2019. "Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe," Renewable Energy, Elsevier, vol. 135(C), pages 1133-1143.
    13. Li, Wei & Dai, Renkun & Zeng, Min & Wang, Qiuwang, 2020. "Review of two types of surface modification on pool boiling enhancement: Passive and active," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    14. Krzysztof Górecki & Krzysztof Posobkiewicz, 2022. "Cooling Systems of Power Semiconductor Devices—A Review," Energies, MDPI, vol. 15(13), pages 1-29, June.
    15. Evgeny A. Chinnov & Sergey Ya. Khmel & Victor Yu. Vladimirov & Aleksey I. Safonov & Vitaliy V. Semionov & Kirill A. Emelyanenko & Alexandre M. Emelyanenko & Ludmila B. Boinovich, 2022. "Boiling Heat Transfer Enhancement on Biphilic Surfaces," Energies, MDPI, vol. 15(19), pages 1-19, October.
    16. Hesam Moghadasi & Navid Malekian & Hamid Saffari & Amir Mirza Gheitaghy & Guo Qi Zhang, 2020. "Recent Advances in the Critical Heat Flux Amelioration of Pool Boiling Surfaces Using Metal Oxide Nanoparticle Deposition," Energies, MDPI, vol. 13(15), pages 1-49, August.
    17. Mohd Danish & Mohammed K. Al Mesfer & Khursheed B. Ansari & Mudassir Hasan & Abdelfattah Amari & Babar Azeem, 2021. "Predicting Conduction Heat Flux through Macrolayer in Nucleate Pool Boiling," Energies, MDPI, vol. 14(13), pages 1-13, June.
    18. Rashidi, Saman & Hormozi, Faramarz & Sundén, Bengt & Mahian, Omid, 2019. "Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications," Applied Energy, Elsevier, vol. 250(C), pages 1491-1547.
    19. Dai, Renkun & Li, Wei & Mostaghimi, Javad & Wang, Qiuwang & Zeng, Min, 2020. "On the optimal heat source location of partially heated energy storage process using the newly developed simplified enthalpy based lattice Boltzmann method," Applied Energy, Elsevier, vol. 275(C).
    20. Salmon, F. & Ghadim, H. Benisi & Godin, A. & Haillot, D. & Veillere, A. & Lacanette, D. & Duquesne, M., 2024. "Optimizing performance for cooling electronic components using innovative heterogeneous materials," Applied Energy, Elsevier, vol. 362(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:187:y:2022:i:c:p:790-800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.