IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v156y2022ics136403212101234x.html
   My bibliography  Save this article

Research progress in transition metal oxide based bifunctional electrocatalysts for aqueous electrically rechargeable zinc-air batteries

Author

Listed:
  • Mechili, Maria
  • Vaitsis, Christos
  • Argirusis, Nikolaos
  • Pandis, Pavlos K.
  • Sourkouni, Georgia
  • Argirusis, Christos

Abstract

Zinc-air batteries (ZABs) are rising contenders for future applications in the power sources sector, due to their intrinsically elevated energy capacity coexisting with eco-friendly characteristics. Although rechargeable alkaline aqueous ZABs hold a considerable position in current research reports, their practical large-scale adoption is still obstructed by poor resistivity and cyclability. The bifunctional electrocatalyst in the air electrode appears to be the controlling factor of the efficiency of the air-cell, thus special effort has been invested into discovering effective and low-cost alternatives. Transition metal oxides have invariably been considered as competent ORR and OER electrocatalysts for other energy applications. However, a vast progress in testing of such nano structured catalysts in experimental aqueous alkaline ZABs has been detected in the last years, hence the scope of this article is to give a detailed summary of the electrochemical properties and performance of these transition metal oxide - based materials, in order to provide fertile ground for further performance-oriented electrocatalysts’ exploration. In the following sections, after defining certain fundamental operational aspects and challenges of the zinc air cell, special emphasis is devoted to broadened examination of recent advances in simple metal oxide, spinel oxide and perovskite oxide - based nanomaterials and nanohybrids applied as bifunctional electrocatalysts in rechargeable liquid alkaline ZAB configurations.

Suggested Citation

  • Mechili, Maria & Vaitsis, Christos & Argirusis, Nikolaos & Pandis, Pavlos K. & Sourkouni, Georgia & Argirusis, Christos, 2022. "Research progress in transition metal oxide based bifunctional electrocatalysts for aqueous electrically rechargeable zinc-air batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:rensus:v:156:y:2022:i:c:s136403212101234x
    DOI: 10.1016/j.rser.2021.111970
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212101234X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Nengneng & Zhang, Yanxing & Wang, Yudong & Wang, Min & Su, Tianshun & Coco, Cameron A. & Qiao, Jinli & Zhou, Xiao-Dong, 2020. "Hierarchical bifunctional catalysts with tailored catalytic activity for high-energy rechargeable Zn-air batteries," Applied Energy, Elsevier, vol. 279(C).
    2. Liu, Qin & Zhu, Jinghui & Zhang, Liwen & Qiu, Yejun, 2018. "Recent advances in energy materials by electrospinning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1825-1858.
    3. Misgina Tilahun Tsehaye & Fannie Alloin & Cristina Iojoiu, 2019. "Prospects for Anion-Exchange Membranes in Alkali Metal–Air Batteries," Energies, MDPI, vol. 12(24), pages 1-26, December.
    4. Tsang, Chi Him Alpha & Huang, Haibao & Xuan, Jin & Wang, Huizhi & Leung, D.Y.C., 2020. "Graphene materials in green energy applications: Recent development and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Mechili & Christos Vaitsis & Nikolaos Argirusis & Pavlos K. Pandis & Georgia Sourkouni & Antonis A. Zorpas & Christos Argirusis, 2022. "Research Progress in Metal-Organic Framework Based Nanomaterials Applied in Battery Cathodes," Energies, MDPI, vol. 15(15), pages 1-30, July.
    2. Zaiter, Issa & Ramadan, Mohamad & Bouabid, Ali & Mayyas, Ahmad & El-Fadel, Mutasem & Mezher, Toufic, 2024. "Enabling industrial decarbonization: Framework for hydrogen integration in the industrial energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cerciello, Francesca & Coppola, Antonio & Lacovig, Paolo & Senneca, Osvalda & Salatino, Piero, 2021. "Characterization of surface-oxides on char under periodically changing oxidation/desorption conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Krishnan, Syam G. & Arulraj, Arunachalam & Khalid, Mohammad & Reddy, M.V. & Jose, Rajan, 2021. "Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Cerciello, Francesca & Senneca, Osvalda & Coppola, Antonio & Forgione, Annunziata & Lacovig, Paolo & Salatino, Piero, 2021. "The influence of temperature on the nature and stability of surface-oxides formed by oxidation of char," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Patrizia Frontera & Lucio Bonaccorsi & Antonio Fotia & Angela Malara, 2023. "Fibrous Materials for Potential Efficient Energy Recovery at Low-Temperature Heat," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    5. Li, Wei & Dai, Renkun & Zeng, Min & Wang, Qiuwang, 2020. "Review of two types of surface modification on pool boiling enhancement: Passive and active," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    6. Zhishun Wei & Tharishinny Raja Mogan & Kunlei Wang & Marcin Janczarek & Ewa Kowalska, 2021. "Morphology-Governed Performance of Multi-Dimensional Photocatalysts for Hydrogen Generation," Energies, MDPI, vol. 14(21), pages 1-37, November.
    7. Shang, Wenxu & Yu, Wentao & Xiao, Xu & Ma, Yanyi & Chen, Ziqi & Ni, Meng & Tan, Peng, 2022. "Optimizing the charging protocol to address the self-discharge issues in rechargeable alkaline Zn-Co batteries," Applied Energy, Elsevier, vol. 308(C).
    8. Dutra, Luciana da Silva & Costa Cerqueira Pinto, Martina & Cipolatti, Eliane Pereira & Aguieiras, Erika Cristina G. & Manoel, Evelin Andrade & Greco-Duarte, Jaqueline & Guimarães Freire, Denise Maria , 2022. "How the biodiesel from immobilized enzymes production is going on: An advanced bibliometric evaluation of global research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. Wei, Manhui & Wang, Keliang & Pei, Pucheng & Zuo, Yayu & Zhong, Liping & Shang, Nuo & Wang, Hengwei & Chen, Junfeng & Zhang, Pengfei & Chen, Zhuo, 2022. "An enhanced-performance Al-air battery optimizing the alkaline electrolyte with a strong Lewis acid ZnCl2," Applied Energy, Elsevier, vol. 324(C).
    10. Wei, Manhui & Wang, Keliang & Pei, Pucheng & Zhong, Liping & Züttel, Andreas & Pham, Thi Ha My & Shang, Nuo & Zuo, Yayu & Wang, Hengwei & Zhao, Siyuan, 2023. "Zinc carboxylate optimization strategy for extending Al-air battery system's lifetime," Applied Energy, Elsevier, vol. 350(C).
    11. Abdelkareem, Mohammad Ali & Abbas, Qaisar & Sayed, Enas Taha & Shehata, N. & Parambath, J.B.M. & Alami, Abdul Hai & Olabi, A.G., 2024. "Recent advances on metal-organic frameworks (MOFs) and their applications in energy conversion devices: Comprehensive review," Energy, Elsevier, vol. 299(C).
    12. Adam Starowicz & Marcin Zieliński & Paulina Rusanowska & Marcin Dębowski, 2023. "Microbial Fuel Cell Performance Boost through the Use of Graphene and Its Modifications—Review," Energies, MDPI, vol. 16(2), pages 1-13, January.
    13. Pan, Lyuming & Chen, Dongfang & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "A novel structural design of air cathodes expanding three-phase reaction interfaces for zinc-air batteries," Applied Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:156:y:2022:i:c:s136403212101234x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.