IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p7920-d1145042.html
   My bibliography  Save this article

Investigation of the Enhancement of Boiling Heat Transfer Performance Utilizing a Hybrid Wetting Surface with a Macroscopic Millimeter-Scale Pillar Array

Author

Listed:
  • Chun Shen

    (College of Automotive Engineering, Jilin University, Changchun 130022, China
    Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China)

  • Dongjun Xu

    (College of Automotive Engineering, Jilin University, Changchun 130022, China)

  • Bo Wei

    (College of Automotive Engineering, Jilin University, Changchun 130022, China)

  • Chengchun Zhang

    (Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China)

  • Shenghua Du

    (Hebei Province Low-Carbon and Clean Building Technology Innovation Center, Yanshan University, Qinhuangdao 066004, China)

  • Tian Zhao

    (MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China)

Abstract

The heat transfer process is an important part of energy utilization and conversion, and boiling heat transfer is one of the most significant and effective heat transfer modes in use. Enhancing boiling heat transfer can directly improve energy use efficiency and promote the sustainable development of the energy industry. Surfaces with mixed wetting topologies have been proven to possess the potential to enhance boiling heat transfer. However, the heat transfer promoting mechanism of these types of surfaces requires further clarification on actual heat exchanger surfaces with macroscale heat transfer enhancement structures, such as millimeter-scale pillars. In this study, the boiling heat transfer enhancement mechanism and the performance of the hybrid wetting surfaces with an array of macropillars were explored using both experimentation and numerical simulation. In the experiment, the single bubble growth dynamics at the onset sites of nucleation of these hybrid wetting surfaces in the initial boiling stage were recorded using a CCD camera with a top view. The boiling heat transfer coefficient was also measured at the stable boiling stage. Within the entire tested range of heat flux (3.75–18 W/cm 2 ), the hybrid wetting surfaces significantly enhanced the boiling heat transfer, and the HPo(bottom)–HPi(top) surface (surf-2) exhibited the best heat transfer performance. At the representative heat flux 12.5 W/cm 2 , the boiling heat transfer coefficient of the HPo (bottom)–HPi (top) surface (surf-2) and the HPi (bottom)–HPo (top) surface (surf-3) were more than 33% and 18% higher than the pure copper flat surface, and more than 16% and 3% higher than the uniform HPi surface (surf-4), respectively. On the one hand, due to the view field of camera being blocked by the fiercely growing bubbles in the stable boiling stage, it was difficult to record bubble numbers and gather statistics at the onset sites of nucleation in order to correlate the bubble dynamics with the mechanism of boiling heat transfer enhancement. On the other hand, the single bubble growth dynamics recorded during the initial boiling stage lacked information about the hybrid wetting surfaces in the vertical cross-sectional plane. Therefore, a two-dimensional VOF-based numerical simulation was adopted to supplement the contribution of hybrid wetting surfaces in the vertical plane. The simulation results indicated that the hybrid wetting surfaces with macropillars can inhibit bubble overgrowth and accelerate bubble departure compared with spatially uniform hydrophobic surface. The bubble radius and departure time on surf-2 were smaller than those on surf-3. These are believed to be the reasons why the surf-2 surface exhibited the best heat transfer performance in the experiment. Both the experiment and numerical analysis proved that the hybrid wetting surfaces with macroscale pillars can promote the boiling heat transfer, thus demonstrating potential applications in actual horizontal or vertical tube boiling heat exchangers.

Suggested Citation

  • Chun Shen & Dongjun Xu & Bo Wei & Chengchun Zhang & Shenghua Du & Tian Zhao, 2023. "Investigation of the Enhancement of Boiling Heat Transfer Performance Utilizing a Hybrid Wetting Surface with a Macroscopic Millimeter-Scale Pillar Array," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7920-:d:1145042
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/7920/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/7920/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Wei & Dai, Renkun & Zeng, Min & Wang, Qiuwang, 2020. "Review of two types of surface modification on pool boiling enhancement: Passive and active," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jéssica Martha Nunes & Jeferson Diehl de Oliveira & Jacqueline Biancon Copetti & Sameer Sheshrao Gajghate & Utsab Banerjee & Sushanta K. Mitra & Elaine Maria Cardoso, 2023. "Thermal Performance Analysis of Micro Pin Fin Heat Sinks under Different Flow Conditions," Energies, MDPI, vol. 16(7), pages 1-13, March.
    2. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Qin, Siyu & Ji, Ruiyang & Miao, Chengyu & Jin, Liwen & Yang, Chun & Meng, Xiangzhao, 2024. "Review of enhancing boiling and condensation heat transfer: Surface modification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    5. Yuan, Xiao & Du, Yanping & Su, Jing, 2022. "Approaches and potentials for pool boiling enhancement with superhigh heat flux on responsive smart surfaces: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Evgeny A. Chinnov & Sergey Ya. Khmel & Victor Yu. Vladimirov & Aleksey I. Safonov & Vitaliy V. Semionov & Kirill A. Emelyanenko & Alexandre M. Emelyanenko & Ludmila B. Boinovich, 2022. "Boiling Heat Transfer Enhancement on Biphilic Surfaces," Energies, MDPI, vol. 15(19), pages 1-19, October.
    7. Xu, Nian & Liu, Zilong & Yu, Xinyu & Gao, Jian & Chu, Huaqiang, 2024. "Processes, models and the influencing factors for enhanced boiling heat transfer in porous structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Sun, Yalong & Tang, Yong & Zhang, Shiwei & Yuan, Wei & Tang, Heng, 2022. "A review on fabrication and pool boiling enhancement of three-dimensional complex structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Tang, Heng & Xia, Liangfeng & Tang, Yong & Weng, Changxing & Hu, Zuohuan & Wu, Xiaoyu & Sun, Yalong, 2022. "Fabrication and pool boiling performance assessment of microgroove array surfaces with secondary micro-structures for high power applications," Renewable Energy, Elsevier, vol. 187(C), pages 790-800.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7920-:d:1145042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.