IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-021-27746-y.html
   My bibliography  Save this article

Solid-state cooling by elastocaloric polymer with uniform chain-lengths

Author

Listed:
  • Shixian Zhang

    (Wuhan University of Technology)

  • Quanling Yang

    (Wuhan University of Technology)

  • Chenjian Li

    (Wuhan University of Technology)

  • Yuheng Fu

    (Wuhan University of Technology)

  • Huaqing Zhang

    (Wuhan University of Technology)

  • Zhiwei Ye

    (Wuhan University of Technology)

  • Xingnan Zhou

    (Wuhan University of Technology)

  • Qi Li

    (Tsinghua University)

  • Tao Wang

    (Wuhan University of Technology)

  • Shan Wang

    (Wuhan University of Technology)

  • Wenqing Zhang

    (Wuhan Optics Valley United Property Rights Exchange)

  • Chuanxi Xiong

    (Wuhan University of Technology)

  • Qing Wang

    (The Pennsylvania State University)

Abstract

Although the elastocaloric effect was found in natural rubber as early as 160 years ago, commercial elastocaloric refrigeration based on polymer elastomers has stagnated owing to their deficient elastocaloric effects and large extension ratios. Herein, we demonstrate that polymer elastomers with uniform molecular chain-lengths exhibit enormous elastocaloric effects through reversible conformational changes. An adiabatic temperature change of −15.3 K and an isothermal entropy change of 145 J kg−1 K−1, obtained from poly(styrene-b-ethylene-co-butylene-b-styrene) near room temperature, exceed those of previously reported elastocaloric polymers. A rotary-motion cooling device is tailored to high-strains characteristics of rubbers, which effectively discharges the cooling energy of polymer elastomers. Our work provides a strategy for the enhancement of elastocaloric effects and could promote the commercialization of solid-state cooling devices based on polymer elastomers.

Suggested Citation

  • Shixian Zhang & Quanling Yang & Chenjian Li & Yuheng Fu & Huaqing Zhang & Zhiwei Ye & Xingnan Zhou & Qi Li & Tao Wang & Shan Wang & Wenqing Zhang & Chuanxi Xiong & Qing Wang, 2022. "Solid-state cooling by elastocaloric polymer with uniform chain-lengths," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27746-y
    DOI: 10.1038/s41467-021-27746-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27746-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27746-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bing Li & Yukinobu Kawakita & Seiko Ohira-Kawamura & Takeshi Sugahara & Hui Wang & Jingfan Wang & Yanna Chen & Saori I. Kawaguchi & Shogo Kawaguchi & Koji Ohara & Kuo Li & Dehong Yu & Richard Mole & T, 2019. "Colossal barocaloric effects in plastic crystals," Nature, Nature, vol. 567(7749), pages 506-510, March.
    2. Klinar, K. & Kitanovski, A., 2020. "Thermal control elements for caloric energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sijia Yao & Pengfei Dang & Yiming Li & Yao Wang & Xi Zhang & Ye Liu & Suxin Qian & Dezhen Xue & Ya-Ling He, 2024. "Efficient roller-driven elastocaloric refrigerator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Xueshi Li & Peng Hua & Qingping Sun, 2023. "Continuous and efficient elastocaloric air cooling by coil-bending," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Klara Lünser & Eyüp Kavak & Kübra Gürpinar & Baris Emre & Orhan Atakol & Enric Stern-Taulats & Marcel Porta & Antoni Planes & Pol Lloveras & Josep-Lluís Tamarit & Lluís Mañosa, 2024. "Elastocaloric, barocaloric and magnetocaloric effects in spin crossover polymer composite films," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Shixian Zhang & Yuheng Fu & Xinxing Nie & Chenjian Li & Youshuang Zhou & Yaqi Wang & Juan Yi & Wenlai Xia & Yiheng Song & Qi Li & Chuanxi Xiong & Suxin Qian & Quanling Yang & Qing Wang, 2024. "Shearo-caloric effect enhances elastocaloric responses in polymer composites for solid-state cooling," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Hong Gao & Dong-Hui Wang & Feng-Xia Hu & Qing-Zhen Huang & You-Ting Song & Shuai-Kang Yuan & Zheng-Ying Tian & Bing-Jie Wang & Zi-Bing Yu & Hou-Bo Zhou & Yue Kan & Yuan Lin & Jing Wang & Yun-liang , 2024. "Low pressure reversibly driving colossal barocaloric effect in two-dimensional vdW alkylammonium halides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Yuanjia Zhang & Xueru Chen & Leilei Cheng & Jing Gu & Yulin Xu, 2023. "Conversion of Polyethylene to High-Yield Fuel Oil at Low Temperatures and Atmospheric Initial Pressure," IJERPH, MDPI, vol. 20(5), pages 1-14, February.
    3. Luca Cirillo & Adriana Greco & Claudia Masselli, 2023. "A Solid-to-Solid 2D Model of a Magnetocaloric Cooler with Thermal Diodes: A Sustainable Way for Refrigerating," Energies, MDPI, vol. 16(13), pages 1-17, July.
    4. Li, Wei & Dai, Renkun & Zeng, Min & Wang, Qiuwang, 2020. "Review of two types of surface modification on pool boiling enhancement: Passive and active," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    5. Chunyan Wang & Yi Liu & Wei‐Qiang Chen & Bing Zhu & Shen Qu & Ming Xu, 2021. "Critical review of global plastics stock and flow data," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1300-1317, October.
    6. Sijia Yao & Pengfei Dang & Yiming Li & Yao Wang & Xi Zhang & Ye Liu & Suxin Qian & Dezhen Xue & Ya-Ling He, 2024. "Efficient roller-driven elastocaloric refrigerator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Klara Lünser & Eyüp Kavak & Kübra Gürpinar & Baris Emre & Orhan Atakol & Enric Stern-Taulats & Marcel Porta & Antoni Planes & Pol Lloveras & Josep-Lluís Tamarit & Lluís Mañosa, 2024. "Elastocaloric, barocaloric and magnetocaloric effects in spin crossover polymer composite films," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Fernandes, C.R. & Silva, D.J. & Pereira, A.M. & Ventura, J.O., 2022. "Numerical simulation and optimization of a solid state thermal diode based on shape-memory alloys," Energy, Elsevier, vol. 255(C).
    9. Qiang Li & Luqi Wei & Ni Zhong & Xiaoming Shi & Donglin Han & Shanyu Zheng & Feihong Du & Junye Shi & Jiangping Chen & Houbing Huang & Chungang Duan & Xiaoshi Qian, 2024. "Low-k nano-dielectrics facilitate electric-field induced phase transition in high-k ferroelectric polymers for sustainable electrocaloric refrigeration," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Jinyoung Seo & Ryan D. McGillicuddy & Adam H. Slavney & Selena Zhang & Rahil Ukani & Andrey A. Yakovenko & Shao-Liang Zheng & Jarad A. Mason, 2022. "Colossal barocaloric effects with ultralow hysteresis in two-dimensional metal–halide perovskites," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Dai, Zhaofeng & She, Xiaohui & Wang, Chen & Ding, Yulong & Li, Yongliang & Zhang, Xiaosong & Zhao, Dongliang, 2024. "Dynamic simulation and performance analysis of a solid-state barocaloric refrigeration system," Energy, Elsevier, vol. 294(C).
    12. Qingyong Ren & Ji Qi & Dehong Yu & Zhe Zhang & Ruiqi Song & Wenli Song & Bao Yuan & Tianhao Wang & Weijun Ren & Zhidong Zhang & Xin Tong & Bing Li, 2022. "Ultrasensitive barocaloric material for room-temperature solid-state refrigeration," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Wang, Shuyao & Shi, Yongjun & Li, Ying & Lin, Hai & Fan, Kaijun & Teng, Xiangjie, 2023. "Solid-state refrigeration of shape memory alloy-based elastocaloric materials: A review focusing on preparation methods, properties and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    14. Andrade, Vivian M. & Fernandes, Cláudia R. & Teixeira, Joana S. & Pereira, Clara & Pires, Ana L. & Silva, Daniel J. & Ventura, João & Oliveira, Joana, 2023. "High-performance magnetic thermal switch based on MnFe2O4/Ethylene Glycol:Water refrigerant dispersion," Energy, Elsevier, vol. 283(C).
    15. Shixian Zhang & Yuheng Fu & Xinxing Nie & Chenjian Li & Youshuang Zhou & Yaqi Wang & Juan Yi & Wenlai Xia & Yiheng Song & Qi Li & Chuanxi Xiong & Suxin Qian & Quanling Yang & Qing Wang, 2024. "Shearo-caloric effect enhances elastocaloric responses in polymer composites for solid-state cooling," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Adriaan van den Bruinhorst & Jocasta Avila & Martin Rosenthal & Ange Pellegrino & Manfred Burghammer & Margarida Costa Gomes, 2023. "Defying decomposition: the curious case of choline chloride," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    17. Shin-ichi Ohkoshi & Kosuke Nakagawa & Marie Yoshikiyo & Asuka Namai & Kenta Imoto & Yugo Nagane & Fangda Jia & Olaf Stefanczyk & Hiroko Tokoro & Junhao Wang & Takeshi Sugahara & Kouji Chiba & Kazuhiko, 2023. "Giant adiabatic temperature change and its direct measurement of a barocaloric effect in a charge-transfer solid," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27746-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.