IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v70y2014icp107-115.html
   My bibliography  Save this article

Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD

Author

Listed:
  • Yang, Hua
  • Shen, Wenzhong
  • Xu, Haoran
  • Hong, Zedong
  • Liu, Chao

Abstract

Blade element momentum (BEM) theory with airfoil data is a widely used technique for prediction of wind turbine aerodynamic performance, but the reliability of the airfoil data is an important factor for the prediction accuracy of aerodynamic loads and power. The airfoil characteristics used in BEM codes are mostly based on 2D wind tunnel measurements of airfoils with constant span. Due to 3D effects, a BEM code using airfoil data obtained directly from 2D wind tunnel measurements will not yield the correct loading and power. As a consequence, 2D airfoil characteristics have to be corrected before they can be used in a BEM code. In this article, we consider the MEXICO (Model EXperiments In Controlled cOnditions) rotor where airfoil data are extracted from CFD (Computational Fluid Dynamics) results. The azimuthally averaged velocity is used as the sectional velocity to define the angle of attack and the coefficient of lift and drag is determined by the forces on the blade. The extracted airfoil data are put into a BEM code without further corrections, and the calculated axial and tangential forces are compared to both computations using BEM with Shen's tip loss correction model and experimental data. The comparisons show that the recalculated forces by using airfoil data extracted from CFD have good agreements with the experiment.

Suggested Citation

  • Yang, Hua & Shen, Wenzhong & Xu, Haoran & Hong, Zedong & Liu, Chao, 2014. "Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD," Renewable Energy, Elsevier, vol. 70(C), pages 107-115.
  • Handle: RePEc:eee:renene:v:70:y:2014:i:c:p:107-115
    DOI: 10.1016/j.renene.2014.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114002535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krogstad, Per-Åge & Eriksen, Pål Egil, 2013. "“Blind test” calculations of the performance and wake development for a model wind turbine," Renewable Energy, Elsevier, vol. 50(C), pages 325-333.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongpeng, Liu & Yu, Wang & Rujing, Yan & Peng, Xu & Qing, Wang, 2020. "Influence of the modification of asymmetric trailing-edge thickness on the aerodynamic performance of a wind turbine airfoil," Renewable Energy, Elsevier, vol. 147(P1), pages 1623-1631.
    2. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    3. Siddiqui, M. Salman & Rasheed, Adil & Tabib, Mandar & Kvamsdal, Trond, 2019. "Numerical investigation of modeling frameworks and geometric approximations on NREL 5 MW wind turbine," Renewable Energy, Elsevier, vol. 132(C), pages 1058-1075.
    4. Abutunis, Abdulaziz & Hussein, Rafid & Chandrashekhara, K., 2019. "A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application," Renewable Energy, Elsevier, vol. 136(C), pages 1281-1293.
    5. Hércules Araújo Oliveira & José Gomes de Matos & Luiz Antonio de Souza Ribeiro & Osvaldo Ronald Saavedra & Jerson Rogério Pinheiro Vaz, 2023. "Assessment of Correction Methods Applied to BEMT for Predicting Performance of Horizontal-Axis Wind Turbines," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    6. Vučina, Damir & Marinić-Kragić, Ivo & Milas, Zoran, 2016. "Numerical models for robust shape optimization of wind turbine blades," Renewable Energy, Elsevier, vol. 87(P2), pages 849-862.
    7. Jan Michna & Krzysztof Rogowski & Galih Bangga & Martin O. L. Hansen, 2021. "Accuracy of the Gamma Re-Theta Transition Model for Simulating the DU-91-W2-250 Airfoil at High Reynolds Numbers," Energies, MDPI, vol. 14(24), pages 1-29, December.
    8. Francesco Mazzeo & Derek Micheletto & Alessandro Talamelli & Antonio Segalini, 2022. "An Experimental Study on a Wind Turbine Rotor Affected by Pitch Imbalance," Energies, MDPI, vol. 15(22), pages 1-16, November.
    9. Erkan, Onur & Özkan, Musa & Karakoç, T. Hikmet & Garrett, Stephen J. & Thomas, Peter J., 2020. "Investigation of aerodynamic performance characteristics of a wind-turbine-blade profile using the finite-volume method," Renewable Energy, Elsevier, vol. 161(C), pages 1359-1367.
    10. Li, Qing’an & Xu, Jianzhong & Kamada, Yasunari & Takao, Maeda & Nishimura, Shogo & Wu, Guangxing & Cai, Chang, 2020. "Experimental investigations of airfoil surface flow of a horizontal axis wind turbine with LDV measurements," Energy, Elsevier, vol. 191(C).
    11. Amini, Shayesteh & Golzarian, Mahmood Reza & Mahmoodi, Esmail & Jeromin, Andres & Abbaspour-Fard, Mohammad Hossein, 2021. "Numerical simulation of the Mexico wind turbine using the actuator disk model along with the 3D correction of aerodynamic coefficients in OpenFOAM," Renewable Energy, Elsevier, vol. 163(C), pages 2029-2036.
    12. Venkaiah, P. & Sarkar, Bikash K., 2020. "Hydraulically actuated horizontal axis wind turbine pitch control by model free adaptive controller," Renewable Energy, Elsevier, vol. 147(P1), pages 55-68.
    13. Chen, Bei & Hua, Xugang & Zhang, Zili & Nielsen, Søren R.K. & Chen, Zhengqing, 2021. "Active flutter control of the wind turbines using double-pitched blades," Renewable Energy, Elsevier, vol. 163(C), pages 2081-2097.
    14. Zhang, Xu & Li, Wei & Liu, Hailong, 2015. "Numerical simulation of the effect of relative thickness on aerodynamic performance improvement of asymmetrical blunt trailing-edge modification," Renewable Energy, Elsevier, vol. 80(C), pages 489-497.
    15. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    16. Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.
    17. Kosasih, B. & Saleh Hudin, H., 2016. "Influence of inflow turbulence intensity on the performance of bare and diffuser-augmented micro wind turbine model," Renewable Energy, Elsevier, vol. 87(P1), pages 154-167.
    18. Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.
    19. Kyoungboo Yang, 2020. "Geometry Design Optimization of a Wind Turbine Blade Considering Effects on Aerodynamic Performance by Linearization," Energies, MDPI, vol. 13(9), pages 1-18, May.
    20. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    21. Cai, Chang & Yang, Yingjian & Jia, Yan & Wu, Guangxing & Zhang, Hairui & Yuan, Feiqi & Qian, Quan & Li, Qing'an, 2023. "Aerodynamic load evaluation of leading edge and trailing edge windward states of large-scale wind turbine blade under parked condition," Applied Energy, Elsevier, vol. 350(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Zhi & Lien, Fue-Sang & Yee, Eugene & Meng, Hang, 2022. "A unified framework for aeroacoustics simulation of wind turbines," Renewable Energy, Elsevier, vol. 188(C), pages 299-319.
    2. Yan, Chi & Archer, Cristina L., 2018. "Assessing compressibility effects on the performance of large horizontal-axis wind turbines," Applied Energy, Elsevier, vol. 212(C), pages 33-45.
    3. Sarlak, H. & Nishino, T. & Martínez-Tossas, L.A. & Meneveau, C. & Sørensen, J.N., 2016. "Assessment of blockage effects on the wake characteristics and power of wind turbines," Renewable Energy, Elsevier, vol. 93(C), pages 340-352.
    4. Lignarolo, Lorenzo E.M. & Mehta, Dhruv & Stevens, Richard J.A.M. & Yilmaz, Ali Emre & van Kuik, Gijs & Andersen, Søren J. & Meneveau, Charles & Ferreira, Carlos J. & Ragni, Daniele & Meyers, Johan & v, 2016. "Validation of four LES and a vortex model against stereo-PIV measurements in the near wake of an actuator disc and a wind turbine," Renewable Energy, Elsevier, vol. 94(C), pages 510-523.
    5. Deskos, Georgios & Laizet, Sylvain & Piggott, Matthew D., 2019. "Turbulence-resolving simulations of wind turbine wakes," Renewable Energy, Elsevier, vol. 134(C), pages 989-1002.
    6. Luo, Kun & Zhang, Sanxia & Gao, Zhiying & Wang, Jianwen & Zhang, Liru & Yuan, Renyu & Fan, Jianren & Cen, Kefa, 2015. "Large-eddy simulation and wind-tunnel measurement of aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Renewable Energy, Elsevier, vol. 77(C), pages 351-362.
    7. Asmuth, Henrik & Navarro Diaz, Gonzalo P. & Madsen, Helge Aagaard & Branlard, Emmanuel & Meyer Forsting, Alexander R. & Nilsson, Karl & Jonkman, Jason & Ivanell, Stefan, 2022. "Wind turbine response in waked inflow: A modelling benchmark against full-scale measurements," Renewable Energy, Elsevier, vol. 191(C), pages 868-887.
    8. Ramos-García, Néstor & Sørensen, Jens Nørkær & Shen, Wen Zhong, 2014. "Validation of a three-dimensional viscous–inviscid interactive solver for wind turbine rotors," Renewable Energy, Elsevier, vol. 70(C), pages 78-92.
    9. Amin Allah, Veisi & Shafiei Mayam, Mohammad Hossein, 2017. "Large Eddy Simulation of flow around a single and two in-line horizontal-axis wind turbines," Energy, Elsevier, vol. 121(C), pages 533-544.
    10. Ruiwen Zhao & Angus C. W. Creech & Alistair G. L. Borthwick & Vengatesan Venugopal & Takafumi Nishino, 2020. "Aerodynamic Analysis of a Two-Bladed Vertical-Axis Wind Turbine Using a Coupled Unsteady RANS and Actuator Line Model," Energies, MDPI, vol. 13(4), pages 1-26, February.
    11. Gao, Zhiteng & Li, Ye & Wang, Tongguang & Shen, Wenzhong & Zheng, Xiaobo & Pröbsting, Stefan & Li, Deshun & Li, Rennian, 2021. "Modelling the nacelle wake of a horizontal-axis wind turbine under different yaw conditions," Renewable Energy, Elsevier, vol. 172(C), pages 263-275.
    12. He, Ruiyang & Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2022. "Wind tunnel tests for wind turbines: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    13. De Cillis, Giovanni & Cherubini, Stefania & Semeraro, Onofrio & Leonardi, Stefano & De Palma, Pietro, 2022. "Stability and optimal forcing analysis of a wind turbine wake: Comparison with POD," Renewable Energy, Elsevier, vol. 181(C), pages 765-785.
    14. Noyes, Carlos & Loth, Eric & Martin, Dana & Johnson, Kathryn & Ananda, Gavin & Selig, Michael, 2020. "Extreme-scale load-aligning rotor: To hinge or not to hinge?," Applied Energy, Elsevier, vol. 257(C).
    15. Eriksen, Pål Egil & Krogstad, Per-Åge, 2017. "Development of coherent motion in the wake of a model wind turbine," Renewable Energy, Elsevier, vol. 108(C), pages 449-460.
    16. Veisi, Amin Allah & Shafiei Mayam, Mohammad Hossein, 2017. "Effects of blade rotation direction in the wake region of two in-line turbines using Large Eddy Simulation," Applied Energy, Elsevier, vol. 197(C), pages 375-392.
    17. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    18. Lee, Hakjin & Lee, Duck-Joo, 2020. "Low Reynolds number effects on aerodynamic loads of a small scale wind turbine," Renewable Energy, Elsevier, vol. 154(C), pages 1283-1293.
    19. Sedaghatizadeh, Nima & Arjomandi, Maziar & Kelso, Richard & Cazzolato, Benjamin & Ghayesh, Mergen H., 2018. "Modelling of wind turbine wake using large eddy simulation," Renewable Energy, Elsevier, vol. 115(C), pages 1166-1176.
    20. Pierella, Fabio & Krogstad, Per-Åge & Sætran, Lars, 2014. "Blind Test 2 calculations for two in-line model wind turbines where the downstream turbine operates at various rotational speeds," Renewable Energy, Elsevier, vol. 70(C), pages 62-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:70:y:2014:i:c:p:107-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.