IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8665-d977084.html
   My bibliography  Save this article

An Experimental Study on a Wind Turbine Rotor Affected by Pitch Imbalance

Author

Listed:
  • Francesco Mazzeo

    (Department of Engineering, University of Modena and Reggio Emilia, 41121 Modena, Italy)

  • Derek Micheletto

    (Department of Engineering Mechanics, KTH—Royal Institute of Technology, 114 28 Stockholm, Sweden)

  • Alessandro Talamelli

    (Department of Industrial Engineering, University of Bologna, 40126 Bologna, Italy)

  • Antonio Segalini

    (Department of Earth Sciences, Uppsala University, 752 36 Uppsala, Sweden)

Abstract

An experimental and numerical investigation about the pitch imbalance effect on a wind turbine model is performed. The characterization of the power losses and loads generated on a small-scale model and the validation of an analytical framework for the performance of unbalanced rotors are proposed. Starting from the optimal collective pitch assessment (performed to identify the condition with the maximum power coefficient), the pitch of just one blade was systematically changed: it is seen that the presence of a pitch misalignment is associated with a degradation of the turbine performance, visible both from experiments and from Blade Element Momentum (BEM) calculations (modified to account for the load asymmetry). Up to 30% power losses and a 15% thrust increase are achievable when an imbalanced rotor operates at tip speed ratios around five, clearly highlighting the importance of avoiding this phenomenon when dealing with industrial applications. The numerical model predicts this result within 5% accuracy. Additional numerical simulations showed that, away from the optimal collective pitch, the blade imbalance can provide a power increase or a power decrease with respect to the balanced case, suggesting how an operator can maximise the production of an unbalanced rotor. An analysis of the axial and lateral forces showed a sensitivity of the loads’ standard deviation when imbalance is present. An increase of the lateral loads was observed in all unbalanced cases.

Suggested Citation

  • Francesco Mazzeo & Derek Micheletto & Alessandro Talamelli & Antonio Segalini, 2022. "An Experimental Study on a Wind Turbine Rotor Affected by Pitch Imbalance," Energies, MDPI, vol. 15(22), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8665-:d:977084
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8665/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8665/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jenny Niebsch & Ronny Ramlau & Thien T. Nguyen, 2010. "Mass and Aerodynamic Imbalance Estimates of Wind Turbines," Energies, MDPI, vol. 3(4), pages 1-15, April.
    2. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    3. Majid Bastankhah & Fernando Porté-Agel, 2017. "A New Miniature Wind Turbine for Wind Tunnel Experiments. Part II: Wake Structure and Flow Dynamics," Energies, MDPI, vol. 10(7), pages 1-19, July.
    4. Rocha, P.A. Costa & Carneiro de Araujo, J.W. & Lima, R.J. Pontes & Vieira da Silva, M.E. & Albiero, D. & de Andrade, C.F. & Carneiro, F.O.M., 2018. "The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments," Energy, Elsevier, vol. 148(C), pages 169-178.
    5. Francesco Castellani & Abdelgalil Eltayesh & Matteo Becchetti & Antonio Segalini, 2021. "Aerodynamic Analysis of a Wind-Turbine Rotor Affected by Pitch Unbalance," Energies, MDPI, vol. 14(3), pages 1-16, January.
    6. Yang, Hua & Shen, Wenzhong & Xu, Haoran & Hong, Zedong & Liu, Chao, 2014. "Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD," Renewable Energy, Elsevier, vol. 70(C), pages 107-115.
    7. Adaramola, M.S. & Krogstad, P.-Å., 2011. "Experimental investigation of wake effects on wind turbine performance," Renewable Energy, Elsevier, vol. 36(8), pages 2078-2086.
    8. Majid Bastankhah & Fernando Porté-Agel, 2017. "A New Miniature Wind Turbine for Wind Tunnel Experiments. Part I: Design and Performance," Energies, MDPI, vol. 10(7), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Derek Micheletto & Jens H. M. Fransson & Antonio Segalini, 2023. "Experimental Study of the Transient Behavior of a Wind Turbine Wake Following Yaw Actuation," Energies, MDPI, vol. 16(13), pages 1-16, July.
    2. Abdelmoumen Saci & Mohamed Nadour & Lakhmissi Cherroun & Ahmed Hafaifa & Abdellah Kouzou & Jose Rodriguez & Mohamed Abdelrahem, 2024. "Condition Monitoring Using Digital Fault-Detection Approach for Pitch System in Wind Turbines," Energies, MDPI, vol. 17(16), pages 1-35, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.
    2. He, Ruiyang & Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2022. "Wind tunnel tests for wind turbines: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    3. Tristan Revaz & Mou Lin & Fernando Porté-Agel, 2020. "Numerical Framework for Aerodynamic Characterization of Wind Turbine Airfoils: Application to Miniature Wind Turbine WiRE-01," Energies, MDPI, vol. 13(21), pages 1-18, October.
    4. Guillem Armengol Barcos & Fernando Porté-Agel, 2023. "Enhancing Wind Farm Performance through Axial Induction and Tilt Control: Insights from Wind Tunnel Experiments," Energies, MDPI, vol. 17(1), pages 1-20, December.
    5. Öztürk, Buğrahan & Hassanein, Abdelrahman & Akpolat, M Tuğrul & Abdulrahim, Anas & Perçin, Mustafa & Uzol, Oğuz, 2023. "On the wake characteristics of a model wind turbine and a porous disc: Effects of freestream turbulence intensity," Renewable Energy, Elsevier, vol. 212(C), pages 238-250.
    6. Dong, Xinghui & Li, Jia & Gao, Di & Zheng, Kai, 2021. "Wind speed modeling for cascade clusters of wind turbines Part 2: Wind speed reduction and aggregation superposition," Energy, Elsevier, vol. 215(PB).
    7. Jan Michna & Krzysztof Rogowski & Galih Bangga & Martin O. L. Hansen, 2021. "Accuracy of the Gamma Re-Theta Transition Model for Simulating the DU-91-W2-250 Airfoil at High Reynolds Numbers," Energies, MDPI, vol. 14(24), pages 1-29, December.
    8. Bayron, Paul & Kelso, Richard & Chin, Rey, 2024. "Experimental investigation of tip-speed-ratio influence on horizontal-axis wind turbine wake dynamics," Renewable Energy, Elsevier, vol. 225(C).
    9. Lopez, Daniel & Kuo, Jim & Li, Ni, 2019. "A novel wake model for yawed wind turbines," Energy, Elsevier, vol. 178(C), pages 158-167.
    10. Xing, Zuoxia & Chen, Mingyang & Cui, Jia & Chen, Zhe & Xu, Jian, 2022. "Detection of magnitude and position of rotor aerodynamic imbalance of wind turbines using Convolutional Neural Network," Renewable Energy, Elsevier, vol. 197(C), pages 1020-1033.
    11. Ingrid Neunaber & Michael Hölling & Richard J. A. M. Stevens & Gerard Schepers & Joachim Peinke, 2020. "Distinct Turbulent Regions in the Wake of a Wind Turbine and Their Inflow-Dependent Locations: The Creation of a Wake Map," Energies, MDPI, vol. 13(20), pages 1-20, October.
    12. Rosario Lanzafame & Stefano Mauro & Michele Messina & Sebastian Brusca, 2020. "Development and Validation of CFD 2D Models for the Simulation of Micro H-Darrieus Turbines Subjected to High Boundary Layer Instabilities," Energies, MDPI, vol. 13(21), pages 1-23, October.
    13. Tristan Revaz & Fernando Porté-Agel, 2021. "Large-Eddy Simulation of Wind Turbine Flows: A New Evaluation of Actuator Disk Models," Energies, MDPI, vol. 14(13), pages 1-22, June.
    14. Mou Lin & Fernando Porté-Agel, 2019. "Large-Eddy Simulation of Yawed Wind-Turbine Wakes: Comparisons with Wind Tunnel Measurements and Analytical Wake Models," Energies, MDPI, vol. 12(23), pages 1-18, November.
    15. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    16. Huilai Ren & Xiaodong Zhang & Shun Kang & Sichao Liang, 2018. "Actuator Disc Approach of Wind Turbine Wake Simulation Considering Balance of Turbulence Kinetic Energy," Energies, MDPI, vol. 12(1), pages 1-19, December.
    17. Zygmunt Szczerba & Piotr Szczerba & Kamil Szczerba & Marek Szumski & Krzysztof Pytel, 2023. "Wind Tunnel Experimental Study on the Efficiency of Vertical-Axis Wind Turbines via Analysis of Blade Pitch Angle Influence," Energies, MDPI, vol. 16(13), pages 1-21, June.
    18. Yu-Ting Wu & Chang-Yu Lin & Che-Ming Hsu, 2020. "An Experimental Investigation of Wake Characteristics and Power Generation Efficiency of a Small Wind Turbine under Different Tip Speed Ratios," Energies, MDPI, vol. 13(8), pages 1-19, April.
    19. Wei Li & Shinai Xu & Baiyun Qian & Xiaoxia Gao & Xiaoxun Zhu & Zeqi Shi & Wei Liu & Qiaoliang Hu, 2022. "Large-Scale Wind Turbine’s Load Characteristics Excited by the Wind and Grid in Complex Terrain: A Review," Sustainability, MDPI, vol. 14(24), pages 1-29, December.
    20. Kim, Taewan & Kim, Changwook & Song, Jeonghwan & You, Donghyun, 2024. "Optimal control of a wind farm in time-varying wind using deep reinforcement learning," Energy, Elsevier, vol. 303(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8665-:d:977084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.