IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v181y2022icp765-785.html
   My bibliography  Save this article

Stability and optimal forcing analysis of a wind turbine wake: Comparison with POD

Author

Listed:
  • De Cillis, Giovanni
  • Cherubini, Stefania
  • Semeraro, Onofrio
  • Leonardi, Stefano
  • De Palma, Pietro

Abstract

Understanding the dynamics and generation of coherent structures in wind-turbine wakes is crucial for efficiency improvement of wind farms, which will most probably represent one of the main renewable power generation sources in 2050. In this paper, we investigate the origin of such coherent structures by performing modal and non-modal stability analysis of the mean flow downstream of a wind-turbine rotor. The database consists of large-eddy-simulation results. Bi-local linear-stability and optimal-forcing analyses are performed at several wake's cross-sections. The most unstable perturbations are compared with the most energetic coherent structures recovered by the proper orthogonal decomposition (POD) analysis, showing a good agreement close to the rotor. Further downstream, these modes are overtaken by others with wavenumbers departing from those of the main POD modes. However, optimal-forcing analysis shows that asymptotically stable modes can be amplified by more than one order of magnitude via quasi-resonance mechanisms, bypassing the growth of the most unstable modes in the far wake. This suggests that the most energetic structures are originated by modal instabilities, which trigger quasi-resonance mechanisms in the far wake, determining the emergence of specific frequencies in the turbulent flow. These findings are crucial for designing efficient control systems to optimize wind farm performance.

Suggested Citation

  • De Cillis, Giovanni & Cherubini, Stefania & Semeraro, Onofrio & Leonardi, Stefano & De Palma, Pietro, 2022. "Stability and optimal forcing analysis of a wind turbine wake: Comparison with POD," Renewable Energy, Elsevier, vol. 181(C), pages 765-785.
  • Handle: RePEc:eee:renene:v:181:y:2022:i:c:p:765-785
    DOI: 10.1016/j.renene.2021.09.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121013240
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Bastine & Lukas Vollmer & Matthias Wächter & Joachim Peinke, 2018. "Stochastic Wake Modelling Based on POD Analysis," Energies, MDPI, vol. 11(3), pages 1-29, March.
    2. David Bastine & Björn Witha & Matthias Wächter & Joachim Peinke, 2015. "Towards a Simplified DynamicWake Model Using POD Analysis," Energies, MDPI, vol. 8(2), pages 1-26, January.
    3. Xiaolei Yang & Fotis Sotiropoulos, 2019. "A Review on the Meandering of Wind Turbine Wakes," Energies, MDPI, vol. 12(24), pages 1-20, December.
    4. Krogstad, Per-Åge & Eriksen, Pål Egil, 2013. "“Blind test” calculations of the performance and wake development for a model wind turbine," Renewable Energy, Elsevier, vol. 50(C), pages 325-333.
    5. Ryan Wiser & Joseph Rand & Joachim Seel & Philipp Beiter & Erin Baker & Eric Lantz & Patrick Gilman, 2021. "Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050," Nature Energy, Nature, vol. 6(5), pages 555-565, May.
    6. Esteban Ferrer & Oliver M.F. Browne & Eusebio Valero, 2017. "Sensitivity Analysis to Control the Far-Wake Unsteadiness Behind Turbines," Energies, MDPI, vol. 10(10), pages 1-21, October.
    7. Umberto Ciri & Giovandomenico Petrolo & Maria Vittoria Salvetti & Stefano Leonardi, 2017. "Large-Eddy Simulations of Two In-Line Turbines in a Wind Tunnel with Different Inflow Conditions," Energies, MDPI, vol. 10(6), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Shaohai & Gao, Xiaoxia & Ma, Wanli & Lu, Hongkun & Lv, Tao & Xu, Shinai & Zhu, Xiaoxun & Sun, Haiying & Wang, Yu, 2023. "Derivation and verification of three-dimensional wake model of multiple wind turbines based on super-Gaussian function," Renewable Energy, Elsevier, vol. 215(C).
    2. Ye, Maokun & Chen, Hamn-Ching & Koop, Arjen, 2023. "High-fidelity CFD simulations for the wake characteristics of the NTNU BT1 wind turbine," Energy, Elsevier, vol. 265(C).
    3. De Cillis, Giovanni & Semeraro, Onofrio & Leonardi, Stefano & De Palma, Pietro & Cherubini, Stefania, 2022. "Dynamic-mode-decomposition of the wake of the NREL-5MW wind turbine impinged by a laminar inflow," Renewable Energy, Elsevier, vol. 199(C), pages 1-10.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Dachuan & Gupta, Vikrant & Li, Larry K.B. & Wan, Minping, 2024. "An improved dynamic model for wind-turbine wake flow," Energy, Elsevier, vol. 290(C).
    2. Xiaolei Yang & Daniel Foti & Christopher Kelley & David Maniaci & Fotis Sotiropoulos, 2020. "Wake Statistics of Different-Scale Wind Turbines under Turbulent Boundary Layer Inflow," Energies, MDPI, vol. 13(11), pages 1-17, June.
    3. Cheng, Zhi & Lien, Fue-Sang & Yee, Eugene & Meng, Hang, 2022. "A unified framework for aeroacoustics simulation of wind turbines," Renewable Energy, Elsevier, vol. 188(C), pages 299-319.
    4. Jiufa Cao & Weijun Zhu & Xinbo Wu & Tongguang Wang & Haoran Xu, 2018. "An Aero-acoustic Noise Distribution Prediction Methodology for Offshore Wind Farms," Energies, MDPI, vol. 12(1), pages 1-16, December.
    5. He, J.Y. & Chan, P.W. & Li, Q.S. & Huang, Tao & Yim, Steve Hung Lam, 2024. "Assessment of urban wind energy resource in Hong Kong based on multi-instrument observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    6. Torsten Clemens & Martin Hunyadi-Gall & Andreas Lunzer & Vladislav Arekhov & Martin Datler & Albert Gauer, 2024. "Wind–Photovoltaic–Electrolyzer-Underground Hydrogen Storage System for Cost-Effective Seasonal Energy Storage," Energies, MDPI, vol. 17(22), pages 1-26, November.
    7. Shields, Matt & Beiter, Philipp & Nunemaker, Jake & Cooperman, Aubryn & Duffy, Patrick, 2021. "Impacts of turbine and plant upsizing on the levelized cost of energy for offshore wind," Applied Energy, Elsevier, vol. 298(C).
    8. Navid Belvasi & Boris Conan & Benyamin Schliffke & Laurent Perret & Cian Desmond & Jimmy Murphy & Sandrine Aubrun, 2022. "Far-Wake Meandering of a Wind Turbine Model with Imposed Motions: An Experimental S-PIV Analysis," Energies, MDPI, vol. 15(20), pages 1-17, October.
    9. Lignarolo, Lorenzo E.M. & Mehta, Dhruv & Stevens, Richard J.A.M. & Yilmaz, Ali Emre & van Kuik, Gijs & Andersen, Søren J. & Meneveau, Charles & Ferreira, Carlos J. & Ragni, Daniele & Meyers, Johan & v, 2016. "Validation of four LES and a vortex model against stereo-PIV measurements in the near wake of an actuator disc and a wind turbine," Renewable Energy, Elsevier, vol. 94(C), pages 510-523.
    10. Deskos, Georgios & Laizet, Sylvain & Piggott, Matthew D., 2019. "Turbulence-resolving simulations of wind turbine wakes," Renewable Energy, Elsevier, vol. 134(C), pages 989-1002.
    11. Luo, Kun & Zhang, Sanxia & Gao, Zhiying & Wang, Jianwen & Zhang, Liru & Yuan, Renyu & Fan, Jianren & Cen, Kefa, 2015. "Large-eddy simulation and wind-tunnel measurement of aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Renewable Energy, Elsevier, vol. 77(C), pages 351-362.
    12. Rivera-Arreba, Irene & Li, Zhaobin & Yang, Xiaolei & Bachynski-Polić, Erin E., 2024. "Comparison of the dynamic wake meandering model against large eddy simulation for horizontal and vertical steering of wind turbine wakes," Renewable Energy, Elsevier, vol. 221(C).
    13. Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).
    14. Rizwan Haider & Xin Li & Wei Shi & Zaibin Lin & Qing Xiao & Haisheng Zhao, 2024. "Review of Computational Fluid Dynamics in the Design of Floating Offshore Wind Turbines," Energies, MDPI, vol. 17(17), pages 1-37, August.
    15. Amin Allah, Veisi & Shafiei Mayam, Mohammad Hossein, 2017. "Large Eddy Simulation of flow around a single and two in-line horizontal-axis wind turbines," Energy, Elsevier, vol. 121(C), pages 533-544.
    16. Pedersen, Jaap & Weinand, Jann Michael & Syranidou, Chloi & Rehfeldt, Daniel, 2024. "An efficient solver for large-scale onshore wind farm siting including cable routing," European Journal of Operational Research, Elsevier, vol. 317(2), pages 616-630.
    17. Ruiwen Zhao & Angus C. W. Creech & Alistair G. L. Borthwick & Vengatesan Venugopal & Takafumi Nishino, 2020. "Aerodynamic Analysis of a Two-Bladed Vertical-Axis Wind Turbine Using a Coupled Unsteady RANS and Actuator Line Model," Energies, MDPI, vol. 13(4), pages 1-26, February.
    18. Andrés Guggeri & Martín Draper, 2019. "Large Eddy Simulation of an Onshore Wind Farm with the Actuator Line Model Including Wind Turbine’s Control below and above Rated Wind Speed," Energies, MDPI, vol. 12(18), pages 1-21, September.
    19. Thanh-Cao Le & Tran-Huu-Tin Luu & Huu-Phuong Nguyen & Trung-Hau Nguyen & Duc-Duy Ho & Thanh-Canh Huynh, 2022. "Piezoelectric Impedance-Based Structural Health Monitoring of Wind Turbine Structures: Current Status and Future Perspectives," Energies, MDPI, vol. 15(15), pages 1-31, July.
    20. Gao, Zhiteng & Li, Ye & Wang, Tongguang & Shen, Wenzhong & Zheng, Xiaobo & Pröbsting, Stefan & Li, Deshun & Li, Rennian, 2021. "Modelling the nacelle wake of a horizontal-axis wind turbine under different yaw conditions," Renewable Energy, Elsevier, vol. 172(C), pages 263-275.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:181:y:2022:i:c:p:765-785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.