IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v47y2012icp112-126.html
   My bibliography  Save this article

Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation

Author

Listed:
  • Feng, Zhipeng
  • Liang, Ming
  • Zhang, Yi
  • Hou, Shumin

Abstract

Planetary gearboxes play an important role in wind turbine drive trains. Fault diagnosis of planetary gearboxes is a key topic for maintenance of wind turbines. Considering the spectral complexity of planetary gearbox vibration signals as well as their amplitude modulation and frequency modulation (AMFM) nature, we propose a simple yet effective method to diagnose planetary gearbox faults based on amplitude and frequency demodulations. We use the energy separation algorithm to estimate the amplitude envelope and instantaneous frequency of modulated signals for further demodulation analysis, by exploiting the adaptability of Teager energy operator to instantaneous changes in signals and the fine time resolution. However, the energy separation algorithm requires signals to be mono-components. To satisfy this requirement, we decompose signals into intrinsic mode functions (IMFs) using the ensemble empirical mode decomposition (EEMD) method as it can decompose any signal into mono-components. We further propose a criterion to guide the selection of the most relevant IMF for demodulation analysis according to the wavelet-like filter nature of EEMD and the AMFM characteristics of the planetary gearbox vibration signals. By matching the dominant peaks in the Fourier spectra of the obtained amplitude envelope and instantaneous frequency with the theoretical characteristic frequency of each gear, we can diagnose planetary gearbox faults. The principle and effectiveness of the proposed method are illustrated by simulation and the experimental analysis of signals from a planetary gearbox of a wind turbine test rig. With the proposed method, both the wear and chipping faults can be detected and located for a sun gear of the planetary gearbox test rig.

Suggested Citation

  • Feng, Zhipeng & Liang, Ming & Zhang, Yi & Hou, Shumin, 2012. "Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation," Renewable Energy, Elsevier, vol. 47(C), pages 112-126.
  • Handle: RePEc:eee:renene:v:47:y:2012:i:c:p:112-126
    DOI: 10.1016/j.renene.2012.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112002601
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amirat, Y. & Benbouzid, M.E.H. & Al-Ahmar, E. & Bensaker, B. & Turri, S., 2009. "A brief status on condition monitoring and fault diagnosis in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2629-2636, December.
    2. Jiang, Yonghua & Tang, Baoping & Qin, Yi & Liu, Wenyi, 2011. "Feature extraction method of wind turbine based on adaptive Morlet wavelet and SVD," Renewable Energy, Elsevier, vol. 36(8), pages 2146-2153.
    3. Tang, Baoping & Liu, Wenyi & Song, Tao, 2010. "Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution," Renewable Energy, Elsevier, vol. 35(12), pages 2862-2866.
    4. Hameed, Z. & Hong, Y.S. & Cho, Y.M. & Ahn, S.H. & Song, C.K., 2009. "Condition monitoring and fault detection of wind turbines and related algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 1-39, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueli An & Dongxiang Jiang, 2014. "Bearing fault diagnosis of wind turbine based on intrinsic time-scale decomposition frequency spectrum," Journal of Risk and Reliability, , vol. 228(6), pages 558-566, December.
    2. Chatterjee, Joyjit & Dethlefs, Nina, 2021. "Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    4. Feng, Zhipeng & Qin, Sifeng & Liang, Ming, 2016. "Time–frequency analysis based on Vold-Kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions," Renewable Energy, Elsevier, vol. 85(C), pages 45-56.
    5. Hu, Aijun & Yan, Xiaoan & Xiang, Ling, 2015. "A new wind turbine fault diagnosis method based on ensemble intrinsic time-scale decomposition and WPT-fractal dimension," Renewable Energy, Elsevier, vol. 83(C), pages 767-778.
    6. Tang, Baoping & Song, Tao & Li, Feng & Deng, Lei, 2014. "Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine," Renewable Energy, Elsevier, vol. 62(C), pages 1-9.
    7. Wang, Jianzhou & Song, Yiliao & Liu, Feng & Hou, Ru, 2016. "Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 960-981.
    8. Kandukuri, Surya Teja & Klausen, Andreas & Karimi, Hamid Reza & Robbersmyr, Kjell Gunnar, 2016. "A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 697-708.
    9. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    10. Feng, Zhipeng & Liang, Ming, 2014. "Fault diagnosis of wind turbine planetary gearbox under nonstationary conditions via adaptive optimal kernel time–frequency analysis," Renewable Energy, Elsevier, vol. 66(C), pages 468-477.
    11. Liu, W.Y. & Tang, B.P. & Han, J.G. & Lu, X.N. & Hu, N.N. & He, Z.Z., 2015. "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 466-472.
    12. Kong, Yun & Wang, Tianyang & Feng, Zhipeng & Chu, Fulei, 2020. "Discriminative dictionary learning based sparse representation classification for intelligent fault identification of planet bearings in wind turbine," Renewable Energy, Elsevier, vol. 152(C), pages 754-769.
    13. Kong, Yun & Wang, Tianyang & Chu, Fulei, 2019. "Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear," Renewable Energy, Elsevier, vol. 132(C), pages 1373-1388.
    14. Elforjani, Mohamed, 2020. "Diagnosis and prognosis of real world wind turbine gears," Renewable Energy, Elsevier, vol. 147(P1), pages 1676-1693.
    15. Yi, Cancan & Yu, Zhaohong & Lv, Yong & Xiao, Han, 2020. "Reassigned second-order Synchrosqueezing Transform and its application to wind turbine fault diagnosis," Renewable Energy, Elsevier, vol. 161(C), pages 736-749.
    16. Liu, Xianzeng & Yang, Yuhu & Zhang, Jun, 2018. "Resultant vibration signal model based fault diagnosis of a single stage planetary gear train with an incipient tooth crack on the sun gear," Renewable Energy, Elsevier, vol. 122(C), pages 65-79.
    17. Zhang, Yu & Lu, Wenxiu & Chu, Fulei, 2017. "Planet gear fault localization for wind turbine gearbox using acoustic emission signals," Renewable Energy, Elsevier, vol. 109(C), pages 449-460.
    18. Wu, Zhe & Zhang, Qiang & Cheng, Lifeng & Hou, Shuyong & Tan, Shengyue, 2020. "The VMTES: Application to the structural health monitoring and diagnosis of rotating machines," Renewable Energy, Elsevier, vol. 162(C), pages 2380-2396.
    19. Zhu, Caichao & Xu, Xiangyang & Liu, Huaiju & Luo, Tianhong & Zhai, Hongfei, 2014. "Research on dynamical characteristics of wind turbine gearboxes with flexible pins," Renewable Energy, Elsevier, vol. 68(C), pages 724-732.
    20. Teng, Wei & Ding, Xian & Zhang, Xiaolong & Liu, Yibing & Ma, Zhiyong, 2016. "Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform," Renewable Energy, Elsevier, vol. 93(C), pages 591-598.
    21. Li, Jimeng & Chen, Xuefeng & Du, Zhaohui & Fang, Zuowei & He, Zhengjia, 2013. "A new noise-controlled second-order enhanced stochastic resonance method with its application in wind turbine drivetrain fault diagnosis," Renewable Energy, Elsevier, vol. 60(C), pages 7-19.
    22. Xiange Tian & Yongjian Jiang & Chen Liang & Cong Liu & You Ying & Hua Wang & Dahai Zhang & Peng Qian, 2022. "A Novel Condition Monitoring Method of Wind Turbines Based on GMDH Neural Network," Energies, MDPI, vol. 15(18), pages 1-15, September.
    23. Kong, Yun & Han, Qinkai & Chu, Fulei & Qin, Yechen & Dong, Mingming, 2023. "Spectral ensemble sparse representation classification approach for super-robust health diagnostics of wind turbine planetary gearbox," Renewable Energy, Elsevier, vol. 219(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueli An & Dongxiang Jiang, 2014. "Bearing fault diagnosis of wind turbine based on intrinsic time-scale decomposition frequency spectrum," Journal of Risk and Reliability, , vol. 228(6), pages 558-566, December.
    2. Kong, Yun & Wang, Tianyang & Chu, Fulei, 2019. "Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear," Renewable Energy, Elsevier, vol. 132(C), pages 1373-1388.
    3. Zhang, Yu & Lu, Wenxiu & Chu, Fulei, 2017. "Planet gear fault localization for wind turbine gearbox using acoustic emission signals," Renewable Energy, Elsevier, vol. 109(C), pages 449-460.
    4. Liu, W.Y. & Zhang, W.H. & Han, J.G. & Wang, G.F., 2012. "A new wind turbine fault diagnosis method based on the local mean decomposition," Renewable Energy, Elsevier, vol. 48(C), pages 411-415.
    5. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    6. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    7. Peng Guo & Nan Bai, 2011. "Wind Turbine Gearbox Condition Monitoring with AAKR and Moving Window Statistic Methods," Energies, MDPI, vol. 4(11), pages 1-17, November.
    8. Wakui, Tetsuya & Yokoyama, Ryohei, 2013. "Wind speed sensorless performance monitoring based on operating behavior for stand-alone vertical axis wind turbine," Renewable Energy, Elsevier, vol. 53(C), pages 49-59.
    9. Wenyi, Liu & Zhenfeng, Wang & Jiguang, Han & Guangfeng, Wang, 2013. "Wind turbine fault diagnosis method based on diagonal spectrum and clustering binary tree SVM," Renewable Energy, Elsevier, vol. 50(C), pages 1-6.
    10. He, Guolin & Ding, Kang & Li, Weihua & Jiao, Xintao, 2016. "A novel order tracking method for wind turbine planetary gearbox vibration analysis based on discrete spectrum correction technique," Renewable Energy, Elsevier, vol. 87(P1), pages 364-375.
    11. Papini, Guglielmo & Faedo, Nicolás & Mattiazzo, Giuliana, 2024. "Fault diagnosis and fault-tolerant control in wave energy: A perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    12. Faiz, Jawad & Moosavi, S.M.M., 2016. "Eccentricity fault detection – From induction machines to DFIG—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 169-179.
    13. Kong, Yun & Wang, Tianyang & Feng, Zhipeng & Chu, Fulei, 2020. "Discriminative dictionary learning based sparse representation classification for intelligent fault identification of planet bearings in wind turbine," Renewable Energy, Elsevier, vol. 152(C), pages 754-769.
    14. Yang, Zhimin & Chai, Yi, 2016. "A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 345-359.
    15. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    16. Yang, Wenxian & Tian, Sunny W., 2015. "Research on a power quality monitoring technique for individual wind turbines," Renewable Energy, Elsevier, vol. 75(C), pages 187-198.
    17. Kandukuri, Surya Teja & Klausen, Andreas & Karimi, Hamid Reza & Robbersmyr, Kjell Gunnar, 2016. "A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 697-708.
    18. Dao, Phong B., 2022. "Condition monitoring and fault diagnosis of wind turbines based on structural break detection in SCADA data," Renewable Energy, Elsevier, vol. 185(C), pages 641-654.
    19. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    20. Wymore, Mathew L. & Van Dam, Jeremy E. & Ceylan, Halil & Qiao, Daji, 2015. "A survey of health monitoring systems for wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 976-990.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:47:y:2012:i:c:p:112-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.