IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i8p2146-2153.html
   My bibliography  Save this article

Feature extraction method of wind turbine based on adaptive Morlet wavelet and SVD

Author

Listed:
  • Jiang, Yonghua
  • Tang, Baoping
  • Qin, Yi
  • Liu, Wenyi

Abstract

Analyzing the vibration signals of wind turbine usually requires feature extraction. However, in many cases, to extract feature components becomes challenging and the applicability of information drops down due to the large amount of noise. In this paper, a new denoising method based on adaptive Morlet wavelet and singular value decomposition (SVD) is applied to feature extraction for wind turbine vibration signals. Modified Shannon wavelet entropy is utilized to optimize central frequency and bandwidth parameter of the Morlet wavelet so as to achieve optimal match with the impulsive components. The time-frequency resolution can be adapted to different signals of interest. Then, an improved matrix construction method is used to construct matrix of the wavelet coefficient, and the scale periodical exponential (SPE) spectrum is obtained by SVD for selecting the appropriate transform scale. Experimental analysis and application into signal denoising indicate that the proposed method has better denoising performance than other wavelet transforms. The results of the experimental analysis in rolling bearing and the application in planetary gearbox show that the proposed method is an effective approach to detecting the impulsive feature components hidden in vibration signals and performs well for wind turbine fault diagnosis.

Suggested Citation

  • Jiang, Yonghua & Tang, Baoping & Qin, Yi & Liu, Wenyi, 2011. "Feature extraction method of wind turbine based on adaptive Morlet wavelet and SVD," Renewable Energy, Elsevier, vol. 36(8), pages 2146-2153.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:8:p:2146-2153
    DOI: 10.1016/j.renene.2011.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111000152
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.01.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Wenyi & Tang, Baoping & Jiang, Yonghua, 2010. "Status and problems of wind turbine structural health monitoring techniques in China," Renewable Energy, Elsevier, vol. 35(7), pages 1414-1418.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueli An & Dongxiang Jiang, 2014. "Bearing fault diagnosis of wind turbine based on intrinsic time-scale decomposition frequency spectrum," Journal of Risk and Reliability, , vol. 228(6), pages 558-566, December.
    2. Lixiao Cao & Zheng Qian & Hamid Zareipour & David Wood & Ehsan Mollasalehi & Shuangshu Tian & Yan Pei, 2018. "Prediction of Remaining Useful Life of Wind Turbine Bearings under Non-Stationary Operating Conditions," Energies, MDPI, vol. 11(12), pages 1-20, November.
    3. Chang, Tian-Pau & Liu, Feng-Jiao & Ko, Hong-Hsi & Huang, Ming-Chao, 2017. "Oscillation characteristic study of wind speed, global solar radiation and air temperature using wavelet analysis," Applied Energy, Elsevier, vol. 190(C), pages 650-657.
    4. Hu, Aijun & Yan, Xiaoan & Xiang, Ling, 2015. "A new wind turbine fault diagnosis method based on ensemble intrinsic time-scale decomposition and WPT-fractal dimension," Renewable Energy, Elsevier, vol. 83(C), pages 767-778.
    5. Salcedo-Sanz, S. & Cornejo-Bueno, L. & Prieto, L. & Paredes, D. & García-Herrera, R., 2018. "Feature selection in machine learning prediction systems for renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 728-741.
    6. Wang, Jianzhou & Song, Yiliao & Liu, Feng & Hou, Ru, 2016. "Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 960-981.
    7. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    8. He, Guolin & Ding, Kang & Li, Weihua & Jiao, Xintao, 2016. "A novel order tracking method for wind turbine planetary gearbox vibration analysis based on discrete spectrum correction technique," Renewable Energy, Elsevier, vol. 87(P1), pages 364-375.
    9. Kong, Yun & Wang, Tianyang & Chu, Fulei, 2019. "Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear," Renewable Energy, Elsevier, vol. 132(C), pages 1373-1388.
    10. Feng, Zhipeng & Liang, Ming & Zhang, Yi & Hou, Shumin, 2012. "Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation," Renewable Energy, Elsevier, vol. 47(C), pages 112-126.
    11. Haiping Li & Jianmin Zhao & Xianglong Ni & Xinghui Zhang, 2018. "Fault diagnosis for machinery based on feature extraction and general regression neural network," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(5), pages 1034-1046, October.
    12. Zhang, Yu & Lu, Wenxiu & Chu, Fulei, 2017. "Planet gear fault localization for wind turbine gearbox using acoustic emission signals," Renewable Energy, Elsevier, vol. 109(C), pages 449-460.
    13. Khazaee, Meghdad & Derian, Pierre & Mouraud, Anthony, 2022. "A comprehensive study on Structural Health Monitoring (SHM) of wind turbine blades by instrumenting tower using machine learning methods," Renewable Energy, Elsevier, vol. 199(C), pages 1568-1579.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, W.Y. & Zhang, W.H. & Han, J.G. & Wang, G.F., 2012. "A new wind turbine fault diagnosis method based on the local mean decomposition," Renewable Energy, Elsevier, vol. 48(C), pages 411-415.
    2. Tang, Baoping & Liu, Wenyi & Song, Tao, 2010. "Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution," Renewable Energy, Elsevier, vol. 35(12), pages 2862-2866.
    3. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    4. Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
    5. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    6. Wenyi, Liu & Zhenfeng, Wang & Jiguang, Han & Guangfeng, Wang, 2013. "Wind turbine fault diagnosis method based on diagonal spectrum and clustering binary tree SVM," Renewable Energy, Elsevier, vol. 50(C), pages 1-6.
    7. Zhao, Zhen-yu & Ling, Wen-jun & Zillante, George & Zuo, Jian, 2012. "Comparative assessment of performance of foreign and local wind turbine manufacturers in China," Renewable Energy, Elsevier, vol. 39(1), pages 424-432.
    8. Teng, Wei & Ding, Xian & Zhang, Xiaolong & Liu, Yibing & Ma, Zhiyong, 2016. "Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform," Renewable Energy, Elsevier, vol. 93(C), pages 591-598.
    9. Rodrigues, R.B. & Mendes, V.M.F. & Catalão, J.P.S., 2011. "Protection of wind energy systems against the indirect effects of lightning," Renewable Energy, Elsevier, vol. 36(11), pages 2888-2896.
    10. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    11. Kang, Jichuan & Sun, Liping & Guedes Soares, C., 2019. "Fault Tree Analysis of floating offshore wind turbines," Renewable Energy, Elsevier, vol. 133(C), pages 1455-1467.
    12. Zhang, Xiaoling & Zhang, Kejia & Yang, Xiao & Fazeres-Ferradosa, Tiago & Zhu, Shun-Peng, 2023. "Transfer learning and direct probability integral method based reliability analysis for offshore wind turbine blades under multi-physics coupling," Renewable Energy, Elsevier, vol. 206(C), pages 552-565.
    13. Tian, Zhigang & Jin, Tongdan & Wu, Bairong & Ding, Fangfang, 2011. "Condition based maintenance optimization for wind power generation systems under continuous monitoring," Renewable Energy, Elsevier, vol. 36(5), pages 1502-1509.
    14. Liu, W.Y., 2017. "A review on wind turbine noise mechanism and de-noising techniques," Renewable Energy, Elsevier, vol. 108(C), pages 311-320.
    15. Zhou, Yuanchun & Zhang, Bing & Zou, Ji & Bi, Jun & Wang, Ke, 2012. "Joint R&D in low-carbon technology development in China: A case study of the wind-turbine manufacturing industry," Energy Policy, Elsevier, vol. 46(C), pages 100-108.
    16. Fausto Pedro García Márquez & Alberto Pliego Marugán & Jesús María Pinar Pérez & Stuart Hillmansen & Mayorkinos Papaelias, 2017. "Optimal Dynamic Analysis of Electrical/Electronic Components in Wind Turbines," Energies, MDPI, vol. 10(8), pages 1-19, July.
    17. Ruiming, Fang & Minling, Wu & xinhua, Guo & Rongyan, Shang & Pengfei, Shao, 2020. "Identifying early defects of wind turbine based on SCADA data and dynamical network marker," Renewable Energy, Elsevier, vol. 154(C), pages 625-635.
    18. Lei Fu & Yanding Wei & Sheng Fang & Xiaojun Zhou & Junqiang Lou, 2017. "Condition Monitoring for Roller Bearings of Wind Turbines Based on Health Evaluation under Variable Operating States," Energies, MDPI, vol. 10(10), pages 1-21, October.
    19. Md Liton Hossain & Ahmed Abu-Siada & S. M. Muyeen, 2018. "Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review," Energies, MDPI, vol. 11(5), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:8:p:2146-2153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.