IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v66y2014icp468-477.html
   My bibliography  Save this article

Fault diagnosis of wind turbine planetary gearbox under nonstationary conditions via adaptive optimal kernel time–frequency analysis

Author

Listed:
  • Feng, Zhipeng
  • Liang, Ming

Abstract

Planetary gearboxes play an important role in wind turbine (WT) drivetrains. WTs usually work under time-varying running conditions due to the volatile wind conditions. The planetary gearbox vibration signals in such an environment are hence highly nonstationary. Conventional spectral analysis and demodulation analysis methods are unable to identify the characteristic frequency of gear fault from such nonstationary signals. As such, this paper presents a time–frequency analysis methods to reveal the constituent frequency components of nonstationary signals and their time-varying features for WT planetary gearbox monitoring. More specifically, we exploit the adaptive optimal kernel (AOK) method for this challenging application because of its fine time–frequency resolution and cross-term free nature, as demonstrated by our simulation analysis. In this study, the AOK method has been applied to identify the time-varying characteristic frequencies of gear fault or to extract different levels of impulses induced by gear faults from lab WT experimental signals and in-situ WT signals under time-varying running conditions. We have demonstrated that the AOK is effective diagnosis of: (a) both the local damage (a single chipped tooth) and distributed faults (wear of all teeth), (b) both sun gear and planet gear faults, and (c) faults with very weak signature (e.g., the sun gear fault at the low speed stage of a WT planetary gearbox).

Suggested Citation

  • Feng, Zhipeng & Liang, Ming, 2014. "Fault diagnosis of wind turbine planetary gearbox under nonstationary conditions via adaptive optimal kernel time–frequency analysis," Renewable Energy, Elsevier, vol. 66(C), pages 468-477.
  • Handle: RePEc:eee:renene:v:66:y:2014:i:c:p:468-477
    DOI: 10.1016/j.renene.2013.12.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114000184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.12.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Zhipeng & Liang, Ming & Zhang, Yi & Hou, Shumin, 2012. "Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation," Renewable Energy, Elsevier, vol. 47(C), pages 112-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
    2. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    3. de Bessa, Iury Valente & Palhares, Reinaldo Martinez & D'Angelo, Marcos Flávio Silveira Vasconcelos & Chaves Filho, João Edgar, 2016. "Data-driven fault detection and isolation scheme for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 87(P1), pages 634-645.
    4. Song, Zhe & Zhang, Zijun & Jiang, Yu & Zhu, Jin, 2018. "Wind turbine health state monitoring based on a Bayesian data-driven approach," Renewable Energy, Elsevier, vol. 125(C), pages 172-181.
    5. Feng, Zhipeng & Qin, Sifeng & Liang, Ming, 2016. "Time–frequency analysis based on Vold-Kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions," Renewable Energy, Elsevier, vol. 85(C), pages 45-56.
    6. Kandukuri, Surya Teja & Klausen, Andreas & Karimi, Hamid Reza & Robbersmyr, Kjell Gunnar, 2016. "A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 697-708.
    7. Liu, W.Y. & Tang, B.P. & Han, J.G. & Lu, X.N. & Hu, N.N. & He, Z.Z., 2015. "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 466-472.
    8. He, Guolin & Ding, Kang & Li, Weihua & Jiao, Xintao, 2016. "A novel order tracking method for wind turbine planetary gearbox vibration analysis based on discrete spectrum correction technique," Renewable Energy, Elsevier, vol. 87(P1), pages 364-375.
    9. Miao He & David He & Jae Yoon & Thomas J Nostrand & Junda Zhu & Eric Bechhoefer, 2019. "Wind turbine planetary gearbox feature extraction and fault diagnosis using a deep-learning-based approach," Journal of Risk and Reliability, , vol. 233(3), pages 303-316, June.
    10. Wang, Yifei & Ma, Xiandong & Joyce, Malcolm J., 2016. "Reducing sensor complexity for monitoring wind turbine performance using principal component analysis," Renewable Energy, Elsevier, vol. 97(C), pages 444-456.
    11. Kong, Yun & Wang, Tianyang & Feng, Zhipeng & Chu, Fulei, 2020. "Discriminative dictionary learning based sparse representation classification for intelligent fault identification of planet bearings in wind turbine," Renewable Energy, Elsevier, vol. 152(C), pages 754-769.
    12. Kong, Yun & Wang, Tianyang & Chu, Fulei, 2019. "Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear," Renewable Energy, Elsevier, vol. 132(C), pages 1373-1388.
    13. Elforjani, Mohamed, 2020. "Diagnosis and prognosis of real world wind turbine gears," Renewable Energy, Elsevier, vol. 147(P1), pages 1676-1693.
    14. Cho, Seongpil & Gao, Zhen & Moan, Torgeir, 2018. "Model-based fault detection, fault isolation and fault-tolerant control of a blade pitch system in floating wind turbines," Renewable Energy, Elsevier, vol. 120(C), pages 306-321.
    15. Liu, Xianzeng & Yang, Yuhu & Zhang, Jun, 2018. "Resultant vibration signal model based fault diagnosis of a single stage planetary gear train with an incipient tooth crack on the sun gear," Renewable Energy, Elsevier, vol. 122(C), pages 65-79.
    16. Alvarez, Eduardo J. & Ribaric, Adrijan P., 2018. "An improved-accuracy method for fatigue load analysis of wind turbine gearbox based on SCADA," Renewable Energy, Elsevier, vol. 115(C), pages 391-399.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    2. Xueli An & Dongxiang Jiang, 2014. "Bearing fault diagnosis of wind turbine based on intrinsic time-scale decomposition frequency spectrum," Journal of Risk and Reliability, , vol. 228(6), pages 558-566, December.
    3. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    4. Wu, Zhe & Zhang, Qiang & Cheng, Lifeng & Hou, Shuyong & Tan, Shengyue, 2020. "The VMTES: Application to the structural health monitoring and diagnosis of rotating machines," Renewable Energy, Elsevier, vol. 162(C), pages 2380-2396.
    5. Tang, Baoping & Song, Tao & Li, Feng & Deng, Lei, 2014. "Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine," Renewable Energy, Elsevier, vol. 62(C), pages 1-9.
    6. Teng, Wei & Ding, Xian & Zhang, Xiaolong & Liu, Yibing & Ma, Zhiyong, 2016. "Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform," Renewable Energy, Elsevier, vol. 93(C), pages 591-598.
    7. Kong, Yun & Han, Qinkai & Chu, Fulei & Qin, Yechen & Dong, Mingming, 2023. "Spectral ensemble sparse representation classification approach for super-robust health diagnostics of wind turbine planetary gearbox," Renewable Energy, Elsevier, vol. 219(P1).
    8. Hu, Aijun & Yan, Xiaoan & Xiang, Ling, 2015. "A new wind turbine fault diagnosis method based on ensemble intrinsic time-scale decomposition and WPT-fractal dimension," Renewable Energy, Elsevier, vol. 83(C), pages 767-778.
    9. Kong, Yun & Wang, Tianyang & Feng, Zhipeng & Chu, Fulei, 2020. "Discriminative dictionary learning based sparse representation classification for intelligent fault identification of planet bearings in wind turbine," Renewable Energy, Elsevier, vol. 152(C), pages 754-769.
    10. Kong, Yun & Wang, Tianyang & Chu, Fulei, 2019. "Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear," Renewable Energy, Elsevier, vol. 132(C), pages 1373-1388.
    11. Chatterjee, Joyjit & Dethlefs, Nina, 2021. "Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Kandukuri, Surya Teja & Klausen, Andreas & Karimi, Hamid Reza & Robbersmyr, Kjell Gunnar, 2016. "A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 697-708.
    13. Liu, Xianzeng & Yang, Yuhu & Zhang, Jun, 2018. "Resultant vibration signal model based fault diagnosis of a single stage planetary gear train with an incipient tooth crack on the sun gear," Renewable Energy, Elsevier, vol. 122(C), pages 65-79.
    14. Zhang, Yu & Lu, Wenxiu & Chu, Fulei, 2017. "Planet gear fault localization for wind turbine gearbox using acoustic emission signals," Renewable Energy, Elsevier, vol. 109(C), pages 449-460.
    15. Feng, Zhipeng & Qin, Sifeng & Liang, Ming, 2016. "Time–frequency analysis based on Vold-Kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions," Renewable Energy, Elsevier, vol. 85(C), pages 45-56.
    16. Yi, Cancan & Yu, Zhaohong & Lv, Yong & Xiao, Han, 2020. "Reassigned second-order Synchrosqueezing Transform and its application to wind turbine fault diagnosis," Renewable Energy, Elsevier, vol. 161(C), pages 736-749.
    17. Zhu, Caichao & Xu, Xiangyang & Liu, Huaiju & Luo, Tianhong & Zhai, Hongfei, 2014. "Research on dynamical characteristics of wind turbine gearboxes with flexible pins," Renewable Energy, Elsevier, vol. 68(C), pages 724-732.
    18. Wang, Jianzhou & Song, Yiliao & Liu, Feng & Hou, Ru, 2016. "Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 960-981.
    19. Li, Jimeng & Chen, Xuefeng & Du, Zhaohui & Fang, Zuowei & He, Zhengjia, 2013. "A new noise-controlled second-order enhanced stochastic resonance method with its application in wind turbine drivetrain fault diagnosis," Renewable Energy, Elsevier, vol. 60(C), pages 7-19.
    20. Xiange Tian & Yongjian Jiang & Chen Liang & Cong Liu & You Ying & Hua Wang & Dahai Zhang & Peng Qian, 2022. "A Novel Condition Monitoring Method of Wind Turbines Based on GMDH Neural Network," Energies, MDPI, vol. 15(18), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:66:y:2014:i:c:p:468-477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.