IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp724-732.html
   My bibliography  Save this article

Research on dynamical characteristics of wind turbine gearboxes with flexible pins

Author

Listed:
  • Zhu, Caichao
  • Xu, Xiangyang
  • Liu, Huaiju
  • Luo, Tianhong
  • Zhai, Hongfei

Abstract

Wind energy is believed as one of the most efficient clean renewable energies and is explored more often currently. The dynamic behaviors of wind turbine gearboxes are concerned by engineers since they affect the whole working performances and the service lives of wind turbines. In this work, a coupled dynamic model is developed for a wind turbine gearbox with flexible pins. For the planetary gear stage, the sun gear is floated and the planetary gears are flexibly supported by flexible pins. The sub-transmission system of the gearbox, which consists of a planetary gear stage and a parallel gear stage, and the body sub-system are coupled through the bearings which are simulated as springs. The dynamic behaviors of the system are studied using a lumped parameter model, in which the stiffnesses of the gearbox body is predicted using the finite element method, the results is also verified by experiments conducted on a test rig.

Suggested Citation

  • Zhu, Caichao & Xu, Xiangyang & Liu, Huaiju & Luo, Tianhong & Zhai, Hongfei, 2014. "Research on dynamical characteristics of wind turbine gearboxes with flexible pins," Renewable Energy, Elsevier, vol. 68(C), pages 724-732.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:724-732
    DOI: 10.1016/j.renene.2014.02.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114001384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.02.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Zhipeng & Liang, Ming & Zhang, Yi & Hou, Shumin, 2012. "Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation," Renewable Energy, Elsevier, vol. 47(C), pages 112-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    2. Liu, Hongwei & Zhang, Pengpeng & Gu, Yajing & Shu, Yongdong & Song, Jiajun & Lin, Yonggang & Li, Wei, 2022. "Dynamics analysis of the power train of 650 kW horizontal-axis tidal current turbine," Renewable Energy, Elsevier, vol. 194(C), pages 51-67.
    3. He, Guolin & Ding, Kang & Wu, Xiaomeng & Yang, Xiaoqing, 2019. "Dynamics modeling and vibration modulation signal analysis of wind turbine planetary gearbox with a floating sun gear," Renewable Energy, Elsevier, vol. 139(C), pages 718-729.
    4. Li, Gang & Li, Yidian & Li, Jia & Huang, Huilan & Huang, Liyan, 2023. "Research on dynamic characteristics of vertical axis wind turbine extended to the outside of buildings," Energy, Elsevier, vol. 272(C).
    5. Wei, Sha & Zhao, Jingshan & Han, Qinkai & Chu, Fulei, 2015. "Dynamic response analysis on torsional vibrations of wind turbine geared transmission system with uncertainty," Renewable Energy, Elsevier, vol. 78(C), pages 60-67.
    6. W. Dheelibun Remigius & Anand Natarajan, 2022. "A review of wind turbine drivetrain loads and load effects for fixed and floating wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    7. Wang, Cheng, 2024. "Study on dynamic performance and optimal design for differential gear train in wind turbine gearbox," Renewable Energy, Elsevier, vol. 221(C).
    8. Liu, Xianzeng & Yang, Yuhu & Zhang, Jun, 2018. "Resultant vibration signal model based fault diagnosis of a single stage planetary gear train with an incipient tooth crack on the sun gear," Renewable Energy, Elsevier, vol. 122(C), pages 65-79.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    2. Wu, Zhe & Zhang, Qiang & Cheng, Lifeng & Hou, Shuyong & Tan, Shengyue, 2020. "The VMTES: Application to the structural health monitoring and diagnosis of rotating machines," Renewable Energy, Elsevier, vol. 162(C), pages 2380-2396.
    3. Teng, Wei & Ding, Xian & Zhang, Xiaolong & Liu, Yibing & Ma, Zhiyong, 2016. "Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform," Renewable Energy, Elsevier, vol. 93(C), pages 591-598.
    4. Kong, Yun & Han, Qinkai & Chu, Fulei & Qin, Yechen & Dong, Mingming, 2023. "Spectral ensemble sparse representation classification approach for super-robust health diagnostics of wind turbine planetary gearbox," Renewable Energy, Elsevier, vol. 219(P1).
    5. Kong, Yun & Wang, Tianyang & Feng, Zhipeng & Chu, Fulei, 2020. "Discriminative dictionary learning based sparse representation classification for intelligent fault identification of planet bearings in wind turbine," Renewable Energy, Elsevier, vol. 152(C), pages 754-769.
    6. Kandukuri, Surya Teja & Klausen, Andreas & Karimi, Hamid Reza & Robbersmyr, Kjell Gunnar, 2016. "A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 697-708.
    7. Liu, Xianzeng & Yang, Yuhu & Zhang, Jun, 2018. "Resultant vibration signal model based fault diagnosis of a single stage planetary gear train with an incipient tooth crack on the sun gear," Renewable Energy, Elsevier, vol. 122(C), pages 65-79.
    8. Zhang, Yu & Lu, Wenxiu & Chu, Fulei, 2017. "Planet gear fault localization for wind turbine gearbox using acoustic emission signals," Renewable Energy, Elsevier, vol. 109(C), pages 449-460.
    9. Yi, Cancan & Yu, Zhaohong & Lv, Yong & Xiao, Han, 2020. "Reassigned second-order Synchrosqueezing Transform and its application to wind turbine fault diagnosis," Renewable Energy, Elsevier, vol. 161(C), pages 736-749.
    10. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    11. Xueli An & Dongxiang Jiang, 2014. "Bearing fault diagnosis of wind turbine based on intrinsic time-scale decomposition frequency spectrum," Journal of Risk and Reliability, , vol. 228(6), pages 558-566, December.
    12. Tang, Baoping & Song, Tao & Li, Feng & Deng, Lei, 2014. "Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine," Renewable Energy, Elsevier, vol. 62(C), pages 1-9.
    13. Hu, Aijun & Yan, Xiaoan & Xiang, Ling, 2015. "A new wind turbine fault diagnosis method based on ensemble intrinsic time-scale decomposition and WPT-fractal dimension," Renewable Energy, Elsevier, vol. 83(C), pages 767-778.
    14. Kong, Yun & Wang, Tianyang & Chu, Fulei, 2019. "Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear," Renewable Energy, Elsevier, vol. 132(C), pages 1373-1388.
    15. Chatterjee, Joyjit & Dethlefs, Nina, 2021. "Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Feng, Zhipeng & Liang, Ming, 2014. "Fault diagnosis of wind turbine planetary gearbox under nonstationary conditions via adaptive optimal kernel time–frequency analysis," Renewable Energy, Elsevier, vol. 66(C), pages 468-477.
    17. Feng, Zhipeng & Qin, Sifeng & Liang, Ming, 2016. "Time–frequency analysis based on Vold-Kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions," Renewable Energy, Elsevier, vol. 85(C), pages 45-56.
    18. Wang, Jianzhou & Song, Yiliao & Liu, Feng & Hou, Ru, 2016. "Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 960-981.
    19. Li, Jimeng & Chen, Xuefeng & Du, Zhaohui & Fang, Zuowei & He, Zhengjia, 2013. "A new noise-controlled second-order enhanced stochastic resonance method with its application in wind turbine drivetrain fault diagnosis," Renewable Energy, Elsevier, vol. 60(C), pages 7-19.
    20. Xiange Tian & Yongjian Jiang & Chen Liang & Cong Liu & You Ying & Hua Wang & Dahai Zhang & Peng Qian, 2022. "A Novel Condition Monitoring Method of Wind Turbines Based on GMDH Neural Network," Energies, MDPI, vol. 15(18), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:724-732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.