IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip1s0960148123012880.html
   My bibliography  Save this article

Spectral ensemble sparse representation classification approach for super-robust health diagnostics of wind turbine planetary gearbox

Author

Listed:
  • Kong, Yun
  • Han, Qinkai
  • Chu, Fulei
  • Qin, Yechen
  • Dong, Mingming

Abstract

Health monitoring, diagnostics and prognostics techniques have been deemed as the most promising and essential framework towards smart operation and maintenance of wind energy equipment. Wind turbine planetary gearboxes have remained the most intricate and challenging transmission units to implement intelligent health diagnostics in wind power generation systems. To resolve this issue, we present a novel spectral ensemble sparse representation classification (S-ESRC) approach for super-robust health diagnostics of wind turbine planetary gearboxes. Specifically, S-ESRC implements super-robust health diagnostics via three procedures consisting of data augmentation, spectral dictionary design, and spectral sparse approximation-based diagnostic scheme. Firstly, the prediction translation-invariance is exploited to accomplish vibrational data augmentation. Second, the spectral dictionary design with robust and strong reconstruction capability is achieved via spectrum construction and feature fusion considering the intra-class and inter-class attributes. Thirdly, the spectral sparse approximation error-based diagnostic scheme is applied to accomplish robust health diagnostics. Experimental validations using a wind turbine planetary gearbox system have demonstrated the applicability and superiority of S-ESRC for super-robust health diagnostics. Comparative studies have comprehensively shown the super-robust performances of S-ESRC including superior diagnostic accuracy, strong robustness to random noises, strong robustness to hyperparameters, and efficient computation costs in comparison with several state-of-the-art approaches.

Suggested Citation

  • Kong, Yun & Han, Qinkai & Chu, Fulei & Qin, Yechen & Dong, Mingming, 2023. "Spectral ensemble sparse representation classification approach for super-robust health diagnostics of wind turbine planetary gearbox," Renewable Energy, Elsevier, vol. 219(P1).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123012880
    DOI: 10.1016/j.renene.2023.119373
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123012880
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Sheng & Yang, Tao & Hua, Haochen & Cao, Junwei, 2021. "Coupling fault diagnosis of wind turbine gearbox based on multitask parallel convolutional neural networks with overall information," Renewable Energy, Elsevier, vol. 178(C), pages 639-650.
    2. He, Guolin & Ding, Kang & Wu, Xiaomeng & Yang, Xiaoqing, 2019. "Dynamics modeling and vibration modulation signal analysis of wind turbine planetary gearbox with a floating sun gear," Renewable Energy, Elsevier, vol. 139(C), pages 718-729.
    3. Kong, Yun & Wang, Tianyang & Feng, Zhipeng & Chu, Fulei, 2020. "Discriminative dictionary learning based sparse representation classification for intelligent fault identification of planet bearings in wind turbine," Renewable Energy, Elsevier, vol. 152(C), pages 754-769.
    4. Kong, Yun & Wang, Tianyang & Chu, Fulei, 2019. "Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear," Renewable Energy, Elsevier, vol. 132(C), pages 1373-1388.
    5. Chatterjee, Joyjit & Dethlefs, Nina, 2021. "Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Feng, Zhipeng & Liang, Ming & Zhang, Yi & Hou, Shumin, 2012. "Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation," Renewable Energy, Elsevier, vol. 47(C), pages 112-126.
    7. Elforjani, Mohamed & Bechhoefer, Eric, 2018. "Analysis of extremely modulated faulty wind turbine data using spectral kurtosis and signal intensity estimator," Renewable Energy, Elsevier, vol. 127(C), pages 258-268.
    8. Yi, Cancan & Yu, Zhaohong & Lv, Yong & Xiao, Han, 2020. "Reassigned second-order Synchrosqueezing Transform and its application to wind turbine fault diagnosis," Renewable Energy, Elsevier, vol. 161(C), pages 736-749.
    9. Liu, Xianzeng & Yang, Yuhu & Zhang, Jun, 2018. "Resultant vibration signal model based fault diagnosis of a single stage planetary gear train with an incipient tooth crack on the sun gear," Renewable Energy, Elsevier, vol. 122(C), pages 65-79.
    10. Brian Kenji Iwana & Seiichi Uchida, 2021. "An empirical survey of data augmentation for time series classification with neural networks," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-32, July.
    11. Shanbr, Suliman & Elasha, Faris & Elforjani, Mohamed & Teixeira, Joao, 2018. "Detection of natural crack in wind turbine gearbox," Renewable Energy, Elsevier, vol. 118(C), pages 172-179.
    12. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    13. Kong, Yun & Qin, Zhaoye & Wang, Tianyang & Han, Qinkai & Chu, Fulei, 2021. "An enhanced sparse representation-based intelligent recognition method for planet bearing fault diagnosis in wind turbines," Renewable Energy, Elsevier, vol. 173(C), pages 987-1004.
    14. Miao, Yonghao & Zhao, Ming & Liang, Kaixuan & Lin, Jing, 2020. "Application of an improved MCKDA for fault detection of wind turbine gear based on encoder signal," Renewable Energy, Elsevier, vol. 151(C), pages 192-203.
    15. Wang, Zhenya & Yao, Ligang & Cai, Yongwu & Zhang, Jun, 2020. "Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis," Renewable Energy, Elsevier, vol. 155(C), pages 1312-1327.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Yun & Qin, Zhaoye & Wang, Tianyang & Han, Qinkai & Chu, Fulei, 2021. "An enhanced sparse representation-based intelligent recognition method for planet bearing fault diagnosis in wind turbines," Renewable Energy, Elsevier, vol. 173(C), pages 987-1004.
    2. Liu, Dongdong & Cui, Lingli & Cheng, Weidong, 2023. "Fault diagnosis of wind turbines under nonstationary conditions based on a novel tacho-less generalized demodulation," Renewable Energy, Elsevier, vol. 206(C), pages 645-657.
    3. Zhan, Jun & Wu, Chengkun & Yang, Canqun & Miao, Qiucheng & Wang, Shilin & Ma, Xiandong, 2022. "Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks," Renewable Energy, Elsevier, vol. 200(C), pages 751-766.
    4. Kong, Yun & Wang, Tianyang & Chu, Fulei, 2019. "Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear," Renewable Energy, Elsevier, vol. 132(C), pages 1373-1388.
    5. Miao, Yonghao & Zhao, Ming & Liang, Kaixuan & Lin, Jing, 2020. "Application of an improved MCKDA for fault detection of wind turbine gear based on encoder signal," Renewable Energy, Elsevier, vol. 151(C), pages 192-203.
    6. Wu, Zhe & Zhang, Qiang & Cheng, Lifeng & Hou, Shuyong & Tan, Shengyue, 2020. "The VMTES: Application to the structural health monitoring and diagnosis of rotating machines," Renewable Energy, Elsevier, vol. 162(C), pages 2380-2396.
    7. He, Guolin & Ding, Kang & Wu, Xiaomeng & Yang, Xiaoqing, 2019. "Dynamics modeling and vibration modulation signal analysis of wind turbine planetary gearbox with a floating sun gear," Renewable Energy, Elsevier, vol. 139(C), pages 718-729.
    8. Wang, Cheng, 2024. "Study on dynamic performance and optimal design for differential gear train in wind turbine gearbox," Renewable Energy, Elsevier, vol. 221(C).
    9. Kong, Yun & Wang, Tianyang & Feng, Zhipeng & Chu, Fulei, 2020. "Discriminative dictionary learning based sparse representation classification for intelligent fault identification of planet bearings in wind turbine," Renewable Energy, Elsevier, vol. 152(C), pages 754-769.
    10. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2023. "A multi-learner neural network approach to wind turbine fault diagnosis with imbalanced data," Renewable Energy, Elsevier, vol. 208(C), pages 420-430.
    11. Wang, Zhenya & Yao, Ligang & Cai, Yongwu & Zhang, Jun, 2020. "Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis," Renewable Energy, Elsevier, vol. 155(C), pages 1312-1327.
    12. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    13. Chatterjee, Joyjit & Dethlefs, Nina, 2021. "Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Elforjani, Mohamed, 2020. "Diagnosis and prognosis of real world wind turbine gears," Renewable Energy, Elsevier, vol. 147(P1), pages 1676-1693.
    15. Arturo Y. Jaen-Cuellar & David A. Elvira-Ortiz & Roque A. Osornio-Rios & Jose A. Antonino-Daviu, 2022. "Advances in Fault Condition Monitoring for Solar Photovoltaic and Wind Turbine Energy Generation: A Review," Energies, MDPI, vol. 15(15), pages 1-36, July.
    16. Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
    17. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    18. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    19. Xu, Xuefang & Li, Bo & Qiao, Zijian & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong, 2023. "Caputo-Fabrizio fractional order derivative stochastic resonance enhanced by ADOF and its application in fault diagnosis of wind turbine drivetrain," Renewable Energy, Elsevier, vol. 219(P1).
    20. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123012880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.