IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v53y2013icp49-59.html
   My bibliography  Save this article

Wind speed sensorless performance monitoring based on operating behavior for stand-alone vertical axis wind turbine

Author

Listed:
  • Wakui, Tetsuya
  • Yokoyama, Ryohei

Abstract

This study develops a wind speed sensorless performance monitoring method for stand-alone vertical axis wind turbines, by means of a numerical analysis using a dynamic simulation model. The method focuses on improvements in the response speed of the rotor with deterioration in wind turbine performance, by decreasing the load torque level for a constant tip-speed ratio operation. The method is unique and original because it can detect the deterioration in the wind turbine performance without any anemometer. First, a numerical analysis is conducted on the operating behaviors of a stand-alone system using a straight-wing vertical axis wind turbine with performance deterioration under decreases in the load torque level. Then, a method is developed to detect the deterioration in the wind turbine performance. In this method, the response speeds of the rotor before and after decreases in the load torque level are compared using the wind speed estimated from the rate of change for the rotational speed. Finally, a performance monitoring algorithm is constructed, and its effectiveness and limitations for detecting the gradual deterioration in the wind turbine performance are discussed.

Suggested Citation

  • Wakui, Tetsuya & Yokoyama, Ryohei, 2013. "Wind speed sensorless performance monitoring based on operating behavior for stand-alone vertical axis wind turbine," Renewable Energy, Elsevier, vol. 53(C), pages 49-59.
  • Handle: RePEc:eee:renene:v:53:y:2013:i:c:p:49-59
    DOI: 10.1016/j.renene.2012.10.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112006970
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.10.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amirat, Y. & Benbouzid, M.E.H. & Al-Ahmar, E. & Bensaker, B. & Turri, S., 2009. "A brief status on condition monitoring and fault diagnosis in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2629-2636, December.
    2. Howell, Robert & Qin, Ning & Edwards, Jonathan & Durrani, Naveed, 2010. "Wind tunnel and numerical study of a small vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(2), pages 412-422.
    3. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    4. Hameed, Z. & Hong, Y.S. & Cho, Y.M. & Ahn, S.H. & Song, C.K., 2009. "Condition monitoring and fault detection of wind turbines and related algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 1-39, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wakui, Tetsuya & Yoshimura, Motoki & Yokoyama, Ryohei, 2017. "Multiple-feedback control of power output and platform pitching motion for a floating offshore wind turbine-generator system," Energy, Elsevier, vol. 141(C), pages 563-578.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kusiak, Andrew & Li, Wenyan, 2011. "The prediction and diagnosis of wind turbine faults," Renewable Energy, Elsevier, vol. 36(1), pages 16-23.
    2. Xueli An & Dongxiang Jiang, 2014. "Bearing fault diagnosis of wind turbine based on intrinsic time-scale decomposition frequency spectrum," Journal of Risk and Reliability, , vol. 228(6), pages 558-566, December.
    3. Peng Guo & Nan Bai, 2011. "Wind Turbine Gearbox Condition Monitoring with AAKR and Moving Window Statistic Methods," Energies, MDPI, vol. 4(11), pages 1-17, November.
    4. Papini, Guglielmo & Faedo, Nicolás & Mattiazzo, Giuliana, 2024. "Fault diagnosis and fault-tolerant control in wave energy: A perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Faiz, Jawad & Moosavi, S.M.M., 2016. "Eccentricity fault detection – From induction machines to DFIG—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 169-179.
    6. Yang, Zhimin & Chai, Yi, 2016. "A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 345-359.
    7. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    8. Yang, Wenxian & Tian, Sunny W., 2015. "Research on a power quality monitoring technique for individual wind turbines," Renewable Energy, Elsevier, vol. 75(C), pages 187-198.
    9. Kandukuri, Surya Teja & Klausen, Andreas & Karimi, Hamid Reza & Robbersmyr, Kjell Gunnar, 2016. "A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 697-708.
    10. Dao, Phong B., 2022. "Condition monitoring and fault diagnosis of wind turbines based on structural break detection in SCADA data," Renewable Energy, Elsevier, vol. 185(C), pages 641-654.
    11. Papatheou, Evangelos & Dervilis, Nikolaos & Maguire, Andrew E. & Campos, Carles & Antoniadou, Ifigeneia & Worden, Keith, 2017. "Performance monitoring of a wind turbine using extreme function theory," Renewable Energy, Elsevier, vol. 113(C), pages 1490-1502.
    12. Feng, Zhipeng & Liang, Ming & Zhang, Yi & Hou, Shumin, 2012. "Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation," Renewable Energy, Elsevier, vol. 47(C), pages 112-126.
    13. Bi, Ran & Zhou, Chengke & Hepburn, Donald M., 2017. "Detection and classification of faults in pitch-regulated wind turbine generators using normal behaviour models based on performance curves," Renewable Energy, Elsevier, vol. 105(C), pages 674-688.
    14. Cambron, P. & Lepvrier, R. & Masson, C. & Tahan, A. & Pelletier, F., 2016. "Power curve monitoring using weighted moving average control charts," Renewable Energy, Elsevier, vol. 94(C), pages 126-135.
    15. Wymore, Mathew L. & Van Dam, Jeremy E. & Ceylan, Halil & Qiao, Daji, 2015. "A survey of health monitoring systems for wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 976-990.
    16. Yang, Wenxian & Little, Christian & Court, Richard, 2014. "S-Transform and its contribution to wind turbine condition monitoring," Renewable Energy, Elsevier, vol. 62(C), pages 137-146.
    17. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    18. Fanghong Zhang & Mingsong Chen & Yuze Zhu & Kai Zhang & Qingan Li, 2023. "A Review of Fault Diagnosis, Status Prediction, and Evaluation Technology for Wind Turbines," Energies, MDPI, vol. 16(3), pages 1-15, January.
    19. Yang, Dong & Li, Hui & Hu, Yaogang & Zhao, Jie & Xiao, Hongwei & Lan, Yongsen, 2016. "Vibration condition monitoring system for wind turbine bearings based on noise suppression with multi-point data fusion," Renewable Energy, Elsevier, vol. 92(C), pages 104-116.
    20. Islam, M.R. & Mekhilef, S. & Saidur, R., 2013. "Progress and recent trends of wind energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 456-468.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:53:y:2013:i:c:p:49-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.