IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v55y2016icp169-179.html
   My bibliography  Save this article

Eccentricity fault detection – From induction machines to DFIG—A review

Author

Listed:
  • Faiz, Jawad
  • Moosavi, S.M.M.

Abstract

Induction machines (IMs) are widely used in different applications. Unpredicted breakdown of these machines usually leads to costly downtimes and repairs. These expenses can be minimized using proper condition monitoring techniques. Eccentricity fault is one of the widespread faults causing machine malfunction; its detection could be useful for prevention of harmful consequences. In this paper, different works on eccentricity diagnosis of IMs with different types of supply have been reviewed. It commences from the simplest open-loop machine, and by considering torque variation and inverter switching gradually turns to complicated closed-loop machine with different control strategies. While in most cases, current is used for condition monitoring, in some instances power and voltage are employed for fault diagnosis. Due to extensive use of IMs in wind turbines as doubly-fed induction generator (DFIG), in addition to declaration of importance of eccentricity fault diagnosis in DFIG, detection of eccentricity fault in DFIG is also reviewed.

Suggested Citation

  • Faiz, Jawad & Moosavi, S.M.M., 2016. "Eccentricity fault detection – From induction machines to DFIG—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 169-179.
  • Handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:169-179
    DOI: 10.1016/j.rser.2015.10.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115011922
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.10.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amirat, Y. & Benbouzid, M.E.H. & Al-Ahmar, E. & Bensaker, B. & Turri, S., 2009. "A brief status on condition monitoring and fault diagnosis in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2629-2636, December.
    2. Hameed, Z. & Hong, Y.S. & Cho, Y.M. & Ahn, S.H. & Song, C.K., 2009. "Condition monitoring and fault detection of wind turbines and related algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 1-39, January.
    3. García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
    2. Zijian Liu & Pinjia Zhang & Shan He & Jin Huang, 2021. "A Review of Modeling and Diagnostic Techniques for Eccentricity Fault in Electric Machines," Energies, MDPI, vol. 14(14), pages 1-21, July.
    3. Fausto Pedro García Márquez & Alberto Pliego Marugán & Jesús María Pinar Pérez & Stuart Hillmansen & Mayorkinos Papaelias, 2017. "Optimal Dynamic Analysis of Electrical/Electronic Components in Wind Turbines," Energies, MDPI, vol. 10(8), pages 1-19, July.
    4. Jordi Burriel-Valencia & Ruben Puche-Panadero & Javier Martinez-Roman & Angel Sapena-Baño & Martin Riera-Guasp & Manuel Pineda-Sánchez, 2019. "Multi-Band Frequency Window for Time-Frequency Fault Diagnosis of Induction Machines," Energies, MDPI, vol. 12(17), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    2. Kandukuri, Surya Teja & Klausen, Andreas & Karimi, Hamid Reza & Robbersmyr, Kjell Gunnar, 2016. "A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 697-708.
    3. Dao, Phong B., 2022. "Condition monitoring and fault diagnosis of wind turbines based on structural break detection in SCADA data," Renewable Energy, Elsevier, vol. 185(C), pages 641-654.
    4. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    5. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    6. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    7. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    8. Xueli An & Dongxiang Jiang, 2014. "Bearing fault diagnosis of wind turbine based on intrinsic time-scale decomposition frequency spectrum," Journal of Risk and Reliability, , vol. 228(6), pages 558-566, December.
    9. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    10. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    11. Chen, Jinglong & Pan, Jun & Li, Zipeng & Zi, Yanyang & Chen, Xuefeng, 2016. "Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals," Renewable Energy, Elsevier, vol. 89(C), pages 80-92.
    12. Moynihan, Bridget & Moaveni, Babak & Liberatore, Sauro & Hines, Eric, 2022. "Estimation of blade forces in wind turbines using blade root strain measurements with OpenFAST verification," Renewable Energy, Elsevier, vol. 184(C), pages 662-676.
    13. Peng Guo & Nan Bai, 2011. "Wind Turbine Gearbox Condition Monitoring with AAKR and Moving Window Statistic Methods," Energies, MDPI, vol. 4(11), pages 1-17, November.
    14. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.
    15. Wakui, Tetsuya & Yokoyama, Ryohei, 2013. "Wind speed sensorless performance monitoring based on operating behavior for stand-alone vertical axis wind turbine," Renewable Energy, Elsevier, vol. 53(C), pages 49-59.
    16. Papini, Guglielmo & Faedo, Nicolás & Mattiazzo, Giuliana, 2024. "Fault diagnosis and fault-tolerant control in wave energy: A perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    17. Oh, Ki-Yong & Park, Joon-Young & Lee, Jun-Shin & Lee, JaeKyung, 2015. "Implementation of a torque and a collective pitch controller in a wind turbine simulator to characterize the dynamics at three control regions," Renewable Energy, Elsevier, vol. 79(C), pages 150-160.
    18. Rodríguez-López, Miguel A. & López-González, Luis M. & López-Ochoa, Luis M. & Las-Heras-Casas, Jesús, 2016. "Development of indicators for the detection of equipment malfunctions and degradation estimation based on digital signals (alarms and events) from operation SCADA," Renewable Energy, Elsevier, vol. 99(C), pages 224-236.
    19. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    20. Kong, Yun & Wang, Tianyang & Feng, Zhipeng & Chu, Fulei, 2020. "Discriminative dictionary learning based sparse representation classification for intelligent fault identification of planet bearings in wind turbine," Renewable Energy, Elsevier, vol. 152(C), pages 754-769.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:169-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.