IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp2380-2396.html
   My bibliography  Save this article

The VMTES: Application to the structural health monitoring and diagnosis of rotating machines

Author

Listed:
  • Wu, Zhe
  • Zhang, Qiang
  • Cheng, Lifeng
  • Hou, Shuyong
  • Tan, Shengyue

Abstract

It is a challenging task to perform the non-linear system state recognition and safety monitoring under strong noise and complex excitation, to tackle this problem, we innovatively propose the variational mode decomposition multiscale holographic transfer entropy statistics (VMTES) method based on the energy transfer relationship between non-linear system signals. The VMTES is a method that measures the information flow direction and coupling degree between non-linear systems, which can precisely measure the slight changes of energy transfer of a mechanical system, accurately assess the slight mutation of dynamical behaviors and status change of a mechanical system and therefore realize fault location and quantification of the non-linear rotating machinery system. The damage severity and direction of the measure point can be precisely described with the VMTES damage assessment indicator, providing the reliable basis for the structural health monitoring and fault diagnosis of the mechanical system. By applying the result to the state recognition of a chaotic system and the structural health monitoring of a rotating machinery system, we can see from the experimental results that the VMTES can effectively detect the fault of gears and rolling bearings under several working conditions. Based on the experiment, we also explain how this method simultaneously locate and quantify the non-linear vibration caused by the fault.

Suggested Citation

  • Wu, Zhe & Zhang, Qiang & Cheng, Lifeng & Hou, Shuyong & Tan, Shengyue, 2020. "The VMTES: Application to the structural health monitoring and diagnosis of rotating machines," Renewable Energy, Elsevier, vol. 162(C), pages 2380-2396.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2380-2396
    DOI: 10.1016/j.renene.2020.10.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812031586X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimpfl Thomas & Peter Franziska Julia, 2013. "Using transfer entropy to measure information flows between financial markets," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(1), pages 85-102, February.
    2. Feng, Zhipeng & Liang, Ming & Zhang, Yi & Hou, Shumin, 2012. "Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation," Renewable Energy, Elsevier, vol. 47(C), pages 112-126.
    3. Dimpfl, Thomas & Peter, Franziska J., 2012. "Using transfer entropy to measure information flows between financial markets," SFB 649 Discussion Papers 2012-051, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. J. T. Lizier & M. Prokopenko, 2010. "Differentiating information transfer and causal effect," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 73(4), pages 605-615, February.
    5. Martinez-Luengo, Maria & Kolios, Athanasios & Wang, Lin, 2016. "Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 91-105.
    6. Alessandro Montalto & Luca Faes & Daniele Marinazzo, 2014. "MuTE: A MATLAB Toolbox to Compare Established and Novel Estimators of the Multivariate Transfer Entropy," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-13, October.
    7. Kong, Yun & Wang, Tianyang & Chu, Fulei, 2019. "Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear," Renewable Energy, Elsevier, vol. 132(C), pages 1373-1388.
    8. Teng, Wei & Ding, Xian & Cheng, Hao & Han, Chen & Liu, Yibing & Mu, Haihua, 2019. "Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform," Renewable Energy, Elsevier, vol. 136(C), pages 393-402.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaoyang, 2022. "Efficient markets are more connected: An entropy-based analysis of the energy, industrial metal and financial markets," Energy Economics, Elsevier, vol. 111(C).
    2. Dimpfl, Thomas & Peter, Franziska J., 2014. "The impact of the financial crisis on transatlantic information flows: An intraday analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 1-13.
    3. Neto, David, 2021. "Are Google searches making the Bitcoin market run amok? A tail event analysis," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    4. Nicoló Andrea Caserini & Paolo Pagnottoni, 2022. "Effective transfer entropy to measure information flows in credit markets," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 729-757, October.
    5. Neto, David, 2022. "Examining interconnectedness between media attention and cryptocurrency markets: A transfer entropy story," Economics Letters, Elsevier, vol. 214(C).
    6. Zhang, Jinren & Cao, Jinde & Wu, Tao & Huang, Wei & Ma, Tao & Zhou, Xinye, 2023. "A novel adaptive multi-scale Rényi transfer entropy based on kernel density estimation," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    7. Assaf, Ata & Mokni, Khaled & Youssef, Manel, 2023. "COVID-19 and information flow between cryptocurrencies, and conventional financial assets," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 73-81.
    8. Román Alejandro Mendoza Urdiales & Andrés García-Medina & José Antonio Nuñez Mora, 2021. "Measuring information flux between social media and stock prices with Transfer Entropy," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-19, September.
    9. Kong, Yun & Han, Qinkai & Chu, Fulei & Qin, Yechen & Dong, Mingming, 2023. "Spectral ensemble sparse representation classification approach for super-robust health diagnostics of wind turbine planetary gearbox," Renewable Energy, Elsevier, vol. 219(P1).
    10. Dima, Bogdan & Dima, Ştefana Maria & Barna, Flavia, 2014. "The signaling effect of tax rates under fiscal competition: A (Shannonian) transfer entropy approach," Economic Modelling, Elsevier, vol. 42(C), pages 373-381.
    11. Basse, Tobias & Wegener, Christoph, 2022. "Inflation expectations: Australian consumer survey data versus the bond market," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 416-430.
    12. Luu Duc Huynh, Toan, 2020. "The effect of uncertainty on the precious metals market: New insights from Transfer Entropy and Neural Network VAR," Resources Policy, Elsevier, vol. 66(C).
    13. Kong, Yun & Wang, Tianyang & Feng, Zhipeng & Chu, Fulei, 2020. "Discriminative dictionary learning based sparse representation classification for intelligent fault identification of planet bearings in wind turbine," Renewable Energy, Elsevier, vol. 152(C), pages 754-769.
    14. Yi, Eojin & Cho, Yerim & Sohn, Sungbin & Ahn, Kwangwon, 2021. "After the Splits: Information Flow between Bitcoin and Bitcoin Family," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Ferreira, Joaquim & Morais, Flávio, 2023. "Predict or to be predicted? A transfer entropy view between adaptive green markets, structural shocks and sentiment index," Finance Research Letters, Elsevier, vol. 56(C).
    16. Ladislav Kristoufek, 2022. "On the role of stablecoins in cryptoasset pricing dynamics," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-26, December.
    17. Nie, Chun-Xiao, 2023. "Time-varying characteristics of information flow networks in the Chinese market: An analysis based on sector indices," Finance Research Letters, Elsevier, vol. 54(C).
    18. Kyungmin Kim, 2016. "Measuring the Informativeness of Market Statistics," Finance and Economics Discussion Series 2016-076, Board of Governors of the Federal Reserve System (U.S.).
    19. Bekiros, Stelios & Nguyen, Duc Khuong & Sandoval Junior, Leonidas & Uddin, Gazi Salah, 2017. "Information diffusion, cluster formation and entropy-based network dynamics in equity and commodity markets," European Journal of Operational Research, Elsevier, vol. 256(3), pages 945-961.
    20. Gao, Hai-Ling & Mei, Dong-Cheng, 2019. "The correlation structure in the international stock markets during global financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2380-2396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.