IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v32y2007i10p1637-1644.html
   My bibliography  Save this article

Simulation of a pilot solar chimney thermal power generating equipment

Author

Listed:
  • Zhou, Xinping
  • Yang, Jiakuan
  • Xiao, Bo
  • Hou, Guoxiang

Abstract

A pilot experimental solar chimney thermal power generating equipment was set up in China. A simulation study was carried out to investigate the performance of the power generating system based on a developed mathematical model. The simulated power outputs in steady state were obtained for different global solar radiation intensity, collector area and chimney height. By intercomparison, it is found that the simulated power outputs are basically in agreement with the results calculated with the measurements, which validates the mathematical model of the solar chimney thermal power generating system. Furthermore, based on the simulation and the specific construction costs at a specific site, the optimum combination of chimney and collector dimensions can be selected for a required electric power output.

Suggested Citation

  • Zhou, Xinping & Yang, Jiakuan & Xiao, Bo & Hou, Guoxiang, 2007. "Simulation of a pilot solar chimney thermal power generating equipment," Renewable Energy, Elsevier, vol. 32(10), pages 1637-1644.
  • Handle: RePEc:eee:renene:v:32:y:2007:i:10:p:1637-1644
    DOI: 10.1016/j.renene.2006.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148106002187
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2006.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hirunlabh, J & Kongduang, W & Namprakai, P & Khedari, J, 1999. "Study of natural ventilation of houses by a metallic solar wall under tropical climate," Renewable Energy, Elsevier, vol. 18(1), pages 109-119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xinping & Yang, Jiakuan & Wang, Fen & Xiao, Bo, 2009. "Economic analysis of power generation from floating solar chimney power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 736-749, May.
    2. Mehdipour, R. & Golzardi, S. & Baniamerian, Z., 2020. "Experimental justification of poor thermal and flow performance of solar chimney by an innovative indoor experimental setup," Renewable Energy, Elsevier, vol. 157(C), pages 1089-1101.
    3. Kasaeian, A.B. & Heidari, E. & Vatan, Sh. Nasiri, 2011. "Experimental investigation of climatic effects on the efficiency of a solar chimney pilot power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5202-5206.
    4. Abedi, Mahyar & Tan, Xu & Klausner, James F. & Bénard, Andre, 2023. "Solar desalination chimneys: Investigation on the feasibility of integrating solar chimneys with humidification–dehumidification systems," Renewable Energy, Elsevier, vol. 202(C), pages 88-102.
    5. Neeraj Mehla & Krishan Kumar & Manoj Kumar, 2019. "Thermal analysis of solar updraft tower by using different absorbers with convergent chimney," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(3), pages 1251-1269, June.
    6. Gitan, Ali Ahmed & Abdulmalek, Shaymaa Husham & Dihrab, Salwan S., 2015. "Tracking collector consideration of tilted collector solar updraft tower power plant under Malaysia climate conditions," Energy, Elsevier, vol. 93(P2), pages 1467-1477.
    7. Zhou, Xinping & Wang, Fang & Ochieng, Reccab M., 2010. "A review of solar chimney power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2315-2338, October.
    8. Xie, Mingxi & Jia, Teng & Dai, Yanjun, 2022. "Hybrid photovoltaic/solar chimney power plant combined with agriculture: The transformation of a decommissioned coal-fired power plant," Renewable Energy, Elsevier, vol. 191(C), pages 1-16.
    9. Maia, C.B. & Castro Silva, J.O. & Cabezas-Gómez, L. & Hanriot, S.M. & Ferreira, A.G., 2013. "Energy and exergy analysis of the airflow inside a solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 350-361.
    10. Erdem Cuce, 2022. "Dependence of electrical power output on collector size in Manzanares solar chimney power plant: an investigation for thermodynamic limits [Solar chimney power plants: a review of the concepts, des," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 1223-1231.
    11. Mehran Ghalamchi & Alibakhsh Kasaeian & Mohammad Hossein Ahmadi & Mehrdad Ghalamchi, 2017. "Evolving ICA and HGAPSO algorithms for prediction of outlet temperatures of constructed solar chimney," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(2), pages 84-95.
    12. Zuo, Lu & Qu, Ning & Liu, Zihan & Ding, Ling & Dai, Pengzhan & Xu, Bofeng & Yuan, Yue, 2020. "Performance study and economic analysis of wind supercharged solar chimney power plant," Renewable Energy, Elsevier, vol. 156(C), pages 837-850.
    13. Rabehi, Rayan & Chaker, Abla & Ming, Tingzhen & Gong, Tingrui, 2018. "Numerical simulation of solar chimney power plant adopting the fan model," Renewable Energy, Elsevier, vol. 126(C), pages 1093-1101.
    14. Guo, Peng-hua & Li, Jing-yin & Wang, Yuan, 2014. "Numerical simulations of solar chimney power plant with radiation model," Renewable Energy, Elsevier, vol. 62(C), pages 24-30.
    15. Li, Jing-yin & Guo, Peng-hua & Wang, Yuan, 2012. "Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines," Renewable Energy, Elsevier, vol. 47(C), pages 21-28.
    16. Zandian, Arash & Ashjaee, Mehdi, 2013. "The thermal efficiency improvement of a steam Rankine cycle by innovative design of a hybrid cooling tower and a solar chimney concept," Renewable Energy, Elsevier, vol. 51(C), pages 465-473.
    17. Ghalamchi, Mehran & Kasaeian, Alibakhsh & Ghalamchi, Mehrdad, 2015. "Experimental study of geometrical and climate effects on the performance of a small solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 425-431.
    18. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    19. Haotian Liu & Justin Weibel & Eckhard Groll, 2017. "Performance Analysis of an Updraft Tower System for Dry Cooling in Large-Scale Power Plants," Energies, MDPI, vol. 10(11), pages 1-23, November.
    20. Weli, Rizgar Bakr & Atrooshi, Soorkeu A. & Schwarze, Ruediger, 2021. "Investigation of the performance parameters of a sloped collector solar chimney model – An adaptation for the North of Iraq," Renewable Energy, Elsevier, vol. 176(C), pages 504-519.
    21. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    22. Tingzhen, Ming & Wei, Liu & Guoling, Xu & Yanbin, Xiong & Xuhu, Guan & Yuan, Pan, 2008. "Numerical simulation of the solar chimney power plant systems coupled with turbine," Renewable Energy, Elsevier, vol. 33(5), pages 897-905.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Gracia, Alvaro & Castell, Albert & Navarro, Lidia & Oró, Eduard & Cabeza, Luisa F., 2013. "Numerical modelling of ventilated facades: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 539-549.
    2. Zhang, Tiantian & Yang, Hongxing, 2019. "Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades," Applied Energy, Elsevier, vol. 242(C), pages 107-120.
    3. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    4. Liu, Shuli & Li, Yongcai, 2015. "An experimental study on the thermal performance of a solar chimney without and with PCM," Renewable Energy, Elsevier, vol. 81(C), pages 338-346.
    5. Xamán, J. & Vargas-López, R. & Gijón-Rivera, M. & Zavala-Guillén, I. & Jiménez, M.J. & Arce, J., 2019. "Transient thermal analysis of a solar chimney for buildings with three different types of absorbing materials: Copper plate/PCM/concrete wall," Renewable Energy, Elsevier, vol. 136(C), pages 139-158.
    6. Tao, Yao & Fang, Xiang & Chew, Michael Yit Lin & Zhang, Lihai & Tu, Jiyuan & Shi, Long, 2021. "Predicting airflow in naturally ventilated double-skin facades: theoretical analysis and modelling," Renewable Energy, Elsevier, vol. 179(C), pages 1940-1954.
    7. Arce, J. & Jiménez, M.J. & Guzmán, J.D. & Heras, M.R. & Alvarez, G. & Xamán, J., 2009. "Experimental study for natural ventilation on a solar chimney," Renewable Energy, Elsevier, vol. 34(12), pages 2928-2934.
    8. Sengupta, Ayan & Mishra, Dipti Prasad & Sarangi, Shailesh Kumar, 2022. "Computational performance analysis of a solar chimney using surface modifications of the absorber plate," Renewable Energy, Elsevier, vol. 185(C), pages 1095-1109.
    9. Zavala-Guillén, I. & Xamán, J. & Hernández-Pérez, I. & Hernández-Lopéz, I. & Gijón-Rivera, M. & Chávez, Y., 2018. "Numerical study of the optimum width of 2a diurnal double air-channel solar chimney," Energy, Elsevier, vol. 147(C), pages 403-417.
    10. Alex Yong Kwang Tan & Nyuk Hien Wong, 2013. "Parameterization Studies of Solar Chimneys in the Tropics," Energies, MDPI, vol. 6(1), pages 1-19, January.
    11. Tchinda, Réné, 2009. "A review of the mathematical models for predicting solar air heaters systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1734-1759, October.
    12. Huang, Sheng & Li, Wuyan & Lu, Jun & Li, Yongcai & Wang, Zhihao & Zhu, Shaohui, 2024. "Experimental study on thermal performances of a solar chimney with and without PCM under different system inclination angles," Energy, Elsevier, vol. 290(C).
    13. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    14. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    15. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Chan, Hoy-Yen & Riffat, Saffa B. & Zhu, Jie, 2010. "Review of passive solar heating and cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 781-789, February.
    17. Bahrehmand, D. & Ameri, M., 2015. "Energy and exergy analysis of different solar air collector systems with natural convection," Renewable Energy, Elsevier, vol. 74(C), pages 357-368.
    18. Miyazaki, T. & Akisawa, A. & Kashiwagi, T., 2006. "The effects of solar chimneys on thermal load mitigation of office buildings under the Japanese climate," Renewable Energy, Elsevier, vol. 31(7), pages 987-1010.
    19. Weli, Rizgar Bakr & Atrooshi, Soorkeu A. & Schwarze, Ruediger, 2021. "Investigation of the performance parameters of a sloped collector solar chimney model – An adaptation for the North of Iraq," Renewable Energy, Elsevier, vol. 176(C), pages 504-519.
    20. Mirrahimi, Seyedehzahra & Mohamed, Mohd Farid & Haw, Lim Chin & Ibrahim, Nik Lukman Nik & Yusoff, Wardah Fatimah Mohammad & Aflaki, Ardalan, 2016. "The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1508-1519.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:32:y:2007:i:10:p:1637-1644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.