IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i5p897-905.html
   My bibliography  Save this article

Numerical simulation of the solar chimney power plant systems coupled with turbine

Author

Listed:
  • Tingzhen, Ming
  • Wei, Liu
  • Guoling, Xu
  • Yanbin, Xiong
  • Xuhu, Guan
  • Yuan, Pan

Abstract

Numerical simulations have been carried out on the solar chimney power plant systems coupled with turbine. The whole system has been divided into three regions: the collector, the chimney and the turbine, and the mathematical models of heat transfer and flow have been set up for these regions. Using the Spanish prototype as a practical example, numerical simulation results for the prototype with a 3-blade turbine show that the maximum power output of the system is a little higher than 50kW. Furthermore, the effect of the turbine rotational speed on the chimney outlet parameters has been analyzed which shows the validity of the numerical method advanced by the author. Thereafter, design and simulation of a MW-graded solar chimney power plant system with a 5-blade turbine have been presented, and the numerical simulation results show that the power output and turbine efficiency are 10MW and 50%, respectively, which presents a reference to the design of large-scale solar chimney power plant systems.

Suggested Citation

  • Tingzhen, Ming & Wei, Liu & Guoling, Xu & Yanbin, Xiong & Xuhu, Guan & Yuan, Pan, 2008. "Numerical simulation of the solar chimney power plant systems coupled with turbine," Renewable Energy, Elsevier, vol. 33(5), pages 897-905.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:5:p:897-905
    DOI: 10.1016/j.renene.2007.06.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107002236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.06.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denantes, F. & Bilgen, E., 2006. "Counter-rotating turbines for solar chimney power plants," Renewable Energy, Elsevier, vol. 31(12), pages 1873-1891.
    2. Zhou, Xinping & Yang, Jiakuan & Xiao, Bo & Hou, Guoxiang, 2007. "Simulation of a pilot solar chimney thermal power generating equipment," Renewable Energy, Elsevier, vol. 32(10), pages 1637-1644.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pinar Mert Cuce & Erdem Cuce & Saad Alshahrani & Shaik Saboor & Harun Sen & Ibham Veza & C. Ahamed Saleel, 2022. "Performance Evaluation of Solar Chimney Power Plants with Bayburt Stone and Basalt on the Ground as Natural Energy Storage Material," Sustainability, MDPI, vol. 14(17), pages 1-14, September.
    2. Ehsan Gholamalizadeh & Jae Dong Chung, 2017. "A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants," Energies, MDPI, vol. 10(10), pages 1-11, October.
    3. Hassan, Aakash & Ali, Majid & Waqas, Adeel, 2018. "Numerical investigation on performance of solar chimney power plant by varying collector slope and chimney diverging angle," Energy, Elsevier, vol. 142(C), pages 411-425.
    4. Paul Caicedo & David Wood & Craig Johansen, 2021. "Radial Turbine Design for Solar Chimney Power Plants," Energies, MDPI, vol. 14(3), pages 1-18, January.
    5. Erdem Cuce & Abhishek Saxena & Pinar Mert Cuce & Harun Sen & Hasan Eroglu & Shanmuga Priya Selvanathan & Kumarasamy Sudhakar & Md Hasanuzzaman, 2022. "Performance assessment of solar chimney power plants with natural thermal energy storage materials on ground: CFD analysis with experimental validation [Optimised performance of a thermally resisti," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 752-759.
    6. Maia, C.B. & Castro Silva, J.O. & Cabezas-Gómez, L. & Hanriot, S.M. & Ferreira, A.G., 2013. "Energy and exergy analysis of the airflow inside a solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 350-361.
    7. Mehrpooya, Mehdi & Shahsavan, Mohsen & Sharifzadeh, Mohammad Mehdi Moftakhari, 2016. "Modeling, energy and exergy analysis of solar chimney power plant-Tehran climate data case study," Energy, Elsevier, vol. 115(P1), pages 257-273.
    8. Emad Abdelsalam & Fares Almomani & Feras Kafiah & Eyad Almaitta & Muhammad Tawalbeh & Asma Khasawneh & Dareen Habash & Abdullah Omar & Malek Alkasrawi, 2021. "A New Sustainable and Novel Hybrid Solar Chimney Power Plant Design for Power Generation and Seawater Desalination," Sustainability, MDPI, vol. 13(21), pages 1-24, November.
    9. Rabehi, Rayan & Chaker, Abla & Ming, Tingzhen & Gong, Tingrui, 2018. "Numerical simulation of solar chimney power plant adopting the fan model," Renewable Energy, Elsevier, vol. 126(C), pages 1093-1101.
    10. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    11. Emad Abdelsalam & Feras Kafiah & Fares Almomani & Muhammad Tawalbeh & Sanad Kiswani & Asma Khasawneh & Dana Ibrahim & Malek Alkasrawi, 2021. "An Innovative Design of a Solar Double-Chimney Power Plant for Electricity Generation," Energies, MDPI, vol. 14(19), pages 1-21, September.
    12. Alvarez, A. & Cabeza, O. & Muñiz, M.C. & Varela, L.M., 2010. "Experimental and numerical investigation of a flat-plate solar collector," Energy, Elsevier, vol. 35(9), pages 3707-3716.
    13. Seungjin Lee & Saerom Kim & Jonghyun Chae & Joong Yull Park, 2019. "Additive Aerodynamic and Thermal Effects of a Central Guide Post and Baffle Installed in a Solar Updraft Tower," Energies, MDPI, vol. 12(18), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xinping & Wang, Fang & Ochieng, Reccab M., 2010. "A review of solar chimney power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2315-2338, October.
    2. Kasaeian, A.B. & Heidari, E. & Vatan, Sh. Nasiri, 2011. "Experimental investigation of climatic effects on the efficiency of a solar chimney pilot power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5202-5206.
    3. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    4. Rabehi, Rayan & Chaker, Abla & Ming, Tingzhen & Gong, Tingrui, 2018. "Numerical simulation of solar chimney power plant adopting the fan model," Renewable Energy, Elsevier, vol. 126(C), pages 1093-1101.
    5. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    6. Erdem Cuce, 2022. "Dependence of electrical power output on collector size in Manzanares solar chimney power plant: an investigation for thermodynamic limits [Solar chimney power plants: a review of the concepts, des," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 1223-1231.
    7. Abedi, Mahyar & Tan, Xu & Klausner, James F. & Bénard, Andre, 2023. "Solar desalination chimneys: Investigation on the feasibility of integrating solar chimneys with humidification–dehumidification systems," Renewable Energy, Elsevier, vol. 202(C), pages 88-102.
    8. Haotian Liu & Justin Weibel & Eckhard Groll, 2017. "Performance Analysis of an Updraft Tower System for Dry Cooling in Large-Scale Power Plants," Energies, MDPI, vol. 10(11), pages 1-23, November.
    9. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    10. Zuo, Lu & Dai, Pengzhan & Yan, Ziyang & Li, Chuang & Zheng, Yuan & Ge, Yunting, 2021. "Design and optimization of turbine for solar chimney power plant based on lifting design method of axial-flow hydraulic turbine impeller," Renewable Energy, Elsevier, vol. 171(C), pages 799-811.
    11. Guo, Peng-hua & Li, Jing-yin & Wang, Yuan, 2014. "Numerical simulations of solar chimney power plant with radiation model," Renewable Energy, Elsevier, vol. 62(C), pages 24-30.
    12. Nirmalendu Biswas & Dipak Kumar Mandal & Sharmistha Bose & Nirmal K. Manna & Ali Cemal Benim, 2023. "Experimental Treatment of Solar Chimney Power Plant—A Comprehensive Review," Energies, MDPI, vol. 16(17), pages 1-41, August.
    13. Zuo, Lu & Qu, Ning & Liu, Zihan & Ding, Ling & Dai, Pengzhan & Xu, Bofeng & Yuan, Yue, 2020. "Performance study and economic analysis of wind supercharged solar chimney power plant," Renewable Energy, Elsevier, vol. 156(C), pages 837-850.
    14. Neeraj Mehla & Krishan Kumar & Manoj Kumar, 2019. "Thermal analysis of solar updraft tower by using different absorbers with convergent chimney," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(3), pages 1251-1269, June.
    15. Mehran Ghalamchi & Alibakhsh Kasaeian & Mohammad Hossein Ahmadi & Mehrdad Ghalamchi, 2017. "Evolving ICA and HGAPSO algorithms for prediction of outlet temperatures of constructed solar chimney," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(2), pages 84-95.
    16. Li, Jing-yin & Guo, Peng-hua & Wang, Yuan, 2012. "Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines," Renewable Energy, Elsevier, vol. 47(C), pages 21-28.
    17. Mehdipour, R. & Golzardi, S. & Baniamerian, Z., 2020. "Experimental justification of poor thermal and flow performance of solar chimney by an innovative indoor experimental setup," Renewable Energy, Elsevier, vol. 157(C), pages 1089-1101.
    18. Kebabsa, Hakim & Said Lounici, Mohand & Daimallah, Ahmed, 2021. "Numerical investigation of a novel tower solar chimney concept," Energy, Elsevier, vol. 214(C).
    19. Hurtado, F.J. & Kaiser, A.S. & Zamora, B., 2012. "Evaluation of the influence of soil thermal inertia on the performance of a solar chimney power plant," Energy, Elsevier, vol. 47(1), pages 213-224.
    20. Paul Caicedo & David Wood & Craig Johansen, 2021. "Radial Turbine Design for Solar Chimney Power Plants," Energies, MDPI, vol. 14(3), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:5:p:897-905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.