IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v27y2013icp350-361.html
   My bibliography  Save this article

Energy and exergy analysis of the airflow inside a solar chimney

Author

Listed:
  • Maia, C.B.
  • Castro Silva, J.O.
  • Cabezas-Gómez, L.
  • Hanriot, S.M.
  • Ferreira, A.G.

Abstract

Sustainable development is closely associated with the use of renewable energy resources. In order to achieve a viable development, from an environmental point of view, the energy efficiencies of processes can be increased using renewable energy resources. There is also a correlation between exergy and sustainable development, since exergy is consumed or destroyed due to irreversibilities. The solar chimney has been highlighted in studies of using solar energy to generate electric power. In this paper, the energy and exergy analyses of the airflow inside a solar chimney are presented. Using experimental data obtained in a prototype, the first and second laws of thermodynamics were used to estimate the amounts of energy and exergy lost to the surroundings and the exergetic efficiency. The dead state was defined using two different reference temperatures. The results show that the exergy losses were lower and the efficiency was higher for the lowest ambient temperature used as the dead state temperature, when compared to the instantaneous ambient temperature.

Suggested Citation

  • Maia, C.B. & Castro Silva, J.O. & Cabezas-Gómez, L. & Hanriot, S.M. & Ferreira, A.G., 2013. "Energy and exergy analysis of the airflow inside a solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 350-361.
  • Handle: RePEc:eee:rensus:v:27:y:2013:i:c:p:350-361
    DOI: 10.1016/j.rser.2013.06.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113003973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.06.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aghbashlo, Mortaza & Mobli, Hossein & Rafiee, Shahin & Madadlou, Ashkan, 2013. "A review on exergy analysis of drying processes and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 1-22.
    2. Zhou, Xinping & Yang, Jiakuan & Xiao, Bo & Hou, Guoxiang, 2007. "Simulation of a pilot solar chimney thermal power generating equipment," Renewable Energy, Elsevier, vol. 32(10), pages 1637-1644.
    3. Nizetic, S. & Klarin, B., 2010. "A simplified analytical approach for evaluation of the optimal ratio of pressure drop across the turbine in solar chimney power plants," Applied Energy, Elsevier, vol. 87(2), pages 587-591, February.
    4. Kasaeian, A.B. & Heidari, E. & Vatan, Sh. Nasiri, 2011. "Experimental investigation of climatic effects on the efficiency of a solar chimney pilot power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5202-5206.
    5. Zhou, Xinping & Wang, Fang & Fan, Jian & Ochieng, Reccab M., 2010. "Performance of solar chimney power plant in Qinghai-Tibet Plateau," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2249-2255, October.
    6. Zhou, Xinping & Wang, Fang & Ochieng, Reccab M., 2010. "A review of solar chimney power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2315-2338, October.
    7. Nizetic, S. & Ninic, N. & Klarin, B., 2008. "Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region," Energy, Elsevier, vol. 33(11), pages 1680-1690.
    8. Hamdan, Mohammad O., 2013. "Analysis of solar chimney power plant utilizing chimney discrete model," Renewable Energy, Elsevier, vol. 56(C), pages 50-54.
    9. Li, Jing-yin & Guo, Peng-hua & Wang, Yuan, 2012. "Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines," Renewable Energy, Elsevier, vol. 47(C), pages 21-28.
    10. Hamdan, Mohammad O., 2011. "Analysis of a solar chimney power plant in the Arabian Gulf region," Renewable Energy, Elsevier, vol. 36(10), pages 2593-2598.
    11. Chergui, Toufik & Larbi, Salah & Bouhdjar, Amor, 2010. "Thermo-hydrodynamic aspect analysis of flows in solar chimney power plants--A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1410-1418, June.
    12. Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
    13. Celma, A.R. & Cuadros, F., 2009. "Energy and exergy analyses of OMW solar drying process," Renewable Energy, Elsevier, vol. 34(3), pages 660-666.
    14. Ketlogetswe, Clever & Fiszdon, Jerzy K. & Seabe, Omphemetse O., 2008. "Solar chimney power generation project--The case for Botswana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 2005-2012, September.
    15. Dai, Y.J & Huang, H.B & Wang, R.Z, 2003. "Case study of solar chimney power plants in Northwestern regions of China," Renewable Energy, Elsevier, vol. 28(8), pages 1295-1304.
    16. Asnaghi, A. & Ladjevardi, S.M., 2012. "Solar chimney power plant performance in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3383-3390.
    17. Tingzhen, Ming & Wei, Liu & Guoling, Xu & Yanbin, Xiong & Xuhu, Guan & Yuan, Pan, 2008. "Numerical simulation of the solar chimney power plant systems coupled with turbine," Renewable Energy, Elsevier, vol. 33(5), pages 897-905.
    18. Gholamalizadeh, E. & Mansouri, S.H., 2013. "A comprehensive approach to design and improve a solar chimney power plant: A special case – Kerman project," Applied Energy, Elsevier, vol. 102(C), pages 975-982.
    19. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "A review on energy and exergy analysis of solar dying systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2812-2819.
    20. Larbi, Salah & Bouhdjar, Amor & Chergui, Toufik, 2010. "Performance analysis of a solar chimney power plant in the southwestern region of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 470-477, January.
    21. Koonsrisuk, Atit & Chitsomboon, Tawit, 2013. "Mathematical modeling of solar chimney power plants," Energy, Elsevier, vol. 51(C), pages 314-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. RahimiLarki, Mohsen & Abardeh, Reza Hosseini & Rahimzadeh, Hassan & Sarlak, Hamid, 2021. "Performance analysis of a laboratory-scale tilted solar chimney system exposed to ambient crosswind," Renewable Energy, Elsevier, vol. 164(C), pages 1156-1170.
    2. Sedighi, Ali Asghar & Deldoost, Zeynab & Karambasti, Bahram Mahjoob, 2020. "Effect of thermal energy storage layer porosity on performance of solar chimney power plant considering turbine pressure drop," Energy, Elsevier, vol. 194(C).
    3. Ming, Tingzhen & Gong, Tingrui & de Richter, Renaud K. & Cai, Cunjin & Sherif, S.A., 2017. "Numerical analysis of seawater desalination based on a solar chimney power plant," Applied Energy, Elsevier, vol. 208(C), pages 1258-1273.
    4. Mehrpooya, Mehdi & Shahsavan, Mohsen & Sharifzadeh, Mohammad Mehdi Moftakhari, 2016. "Modeling, energy and exergy analysis of solar chimney power plant-Tehran climate data case study," Energy, Elsevier, vol. 115(P1), pages 257-273.
    5. Maia, Cristiana Brasil & Castro Silva, Janaína de Oliveira, 2022. "Thermodynamic assessment of a small-scale solar chimney," Renewable Energy, Elsevier, vol. 186(C), pages 35-50.
    6. Wu, Yongjia & Ming, Tingzhen & de Richter, Renaud & Höffer, Rüdiger & Niemann, Hans-Jürgen, 2020. "Large-scale freshwater generation from the humid air using the modified solar chimney," Renewable Energy, Elsevier, vol. 146(C), pages 1325-1336.
    7. Ghalamchi, Mehran & Kasaeian, Alibakhsh & Ghalamchi, Mehrdad, 2015. "Experimental study of geometrical and climate effects on the performance of a small solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 425-431.
    8. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    9. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    10. Cristiana Brasil Maia & Janaína de Oliveira Castro Silva, 2022. "CFD Analysis of a Small-Scale Solar Chimney Exposed to Ambient Crosswind," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    11. Shen, Wenqing & Ming, Tingzhen & Ding, Yan & Wu, Yongjia & de_Richter, Renaud K., 2014. "Numerical analysis on an industrial-scaled solar updraft power plant system with ambient crosswind," Renewable Energy, Elsevier, vol. 68(C), pages 662-676.
    12. Zygmunt Lipnicki & Marta Gortych & Anna Staszczuk & Tadeusz Kuczyński & Piotr Grabas, 2019. "Analytical and Experimental Investigation of the Solar Chimney System," Energies, MDPI, vol. 12(11), pages 1-13, May.
    13. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    14. Das, Pritam & Chandramohan, V.P., 2019. "Computational study on the effect of collector cover inclination angle, absorber plate diameter and chimney height on flow and performance parameters of solar updraft tower (SUT) plant," Energy, Elsevier, vol. 172(C), pages 366-379.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    2. Ghalamchi, Mehran & Kasaeian, Alibakhsh & Ghalamchi, Mehrdad, 2015. "Experimental study of geometrical and climate effects on the performance of a small solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 425-431.
    3. Ming, Tingzhen & Wang, Xinjiang & de Richter, Renaud Kiesgen & Liu, Wei & Wu, Tianhua & Pan, Yuan, 2012. "Numerical analysis on the influence of ambient crosswind on the performance of solar updraft power plant system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5567-5583.
    4. de_Richter, Renaud Kiesgen & Ming, Tingzhen & Caillol, Sylvain, 2013. "Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 82-106.
    5. Emad Abdelsalam & Feras Kafiah & Fares Almomani & Muhammad Tawalbeh & Sanad Kiswani & Asma Khasawneh & Dana Ibrahim & Malek Alkasrawi, 2021. "An Innovative Design of a Solar Double-Chimney Power Plant for Electricity Generation," Energies, MDPI, vol. 14(19), pages 1-21, September.
    6. Zhou, Xinping & Wang, Fang & Ochieng, Reccab M., 2010. "A review of solar chimney power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2315-2338, October.
    7. Mehrpooya, Mehdi & Shahsavan, Mohsen & Sharifzadeh, Mohammad Mehdi Moftakhari, 2016. "Modeling, energy and exergy analysis of solar chimney power plant-Tehran climate data case study," Energy, Elsevier, vol. 115(P1), pages 257-273.
    8. Zhou, Xinping & Bernardes, Marco A. dos S. & Ochieng, Reccab M., 2012. "Influence of atmospheric cross flow on solar updraft tower inflow," Energy, Elsevier, vol. 42(1), pages 393-400.
    9. Setareh, Milad, 2021. "Comprehensive mathematical study on solar chimney powerplant," Renewable Energy, Elsevier, vol. 175(C), pages 470-485.
    10. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    11. Okoye, Chiemeka Onyeka & Taylan, Onur, 2017. "Performance analysis of a solar chimney power plant for rural areas in Nigeria," Renewable Energy, Elsevier, vol. 104(C), pages 96-108.
    12. Milani Shirvan, Kamel & Mirzakhanlari, Soroush & Mamourian, Mojtaba & Kalogirou, Soteris A., 2017. "Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: A sensitivity analysis and numerical simulation," Applied Energy, Elsevier, vol. 195(C), pages 725-737.
    13. Cao, Fei & Liu, Qingjun & Yang, Tian & Zhu, Tianyu & Bai, Jianbo & Zhao, Liang, 2018. "Full-year simulation of solar chimney power plants in Northwest China," Renewable Energy, Elsevier, vol. 119(C), pages 421-428.
    14. Ehsan Gholamalizadeh & Jae Dong Chung, 2017. "A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants," Energies, MDPI, vol. 10(10), pages 1-11, October.
    15. Emad Abdelsalam & Fares Almomani & Feras Kafiah & Eyad Almaitta & Muhammad Tawalbeh & Asma Khasawneh & Dareen Habash & Abdullah Omar & Malek Alkasrawi, 2021. "A New Sustainable and Novel Hybrid Solar Chimney Power Plant Design for Power Generation and Seawater Desalination," Sustainability, MDPI, vol. 13(21), pages 1-24, November.
    16. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    17. Cao, Fei & Yang, Tian & Liu, Qingjun & Zhu, Tianyu & Li, Huashan & Zhao, Liang, 2017. "Design and simulation of a solar double-chimney power plant," Renewable Energy, Elsevier, vol. 113(C), pages 764-773.
    18. Attig-Bahar, F. & Guellouz, M.S. & Sahraoui, M. & Kaddeche, S., 2021. "Economic analysis of a 1 MW solar chimney power plant in Tozeur, Tunisia," Renewable Energy, Elsevier, vol. 178(C), pages 456-465.
    19. Emad Abdelsalam & Feras Kafiah & Malek Alkasrawi & Ismael Al-Hinti & Ahmad Azzam, 2020. "Economic Study of Solar Chimney Power-Water Distillation Plant (SCPWDP)," Energies, MDPI, vol. 13(11), pages 1-14, June.
    20. Asnaghi, A. & Ladjevardi, S.M., 2012. "Solar chimney power plant performance in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3383-3390.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:27:y:2013:i:c:p:350-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.