IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v232y2024ics0960148124011297.html
   My bibliography  Save this article

Simulation and experimental study of thermoelectric generators with an axial gradient metal foam heat exchanger

Author

Listed:
  • Yang, Wenlong
  • Xie, Changjun
  • Jin, Chenchen
  • Zhu, Wenchao
  • Li, Yang
  • Tang, Xinfeng

Abstract

The utilization of metal foam for heat transfer augmentation is regarded as a highly efficient technique, albeit associated with significant pressure losses. To enhance the feasibility of employing metal foam in thermoelectric generators and mitigate the high-pressure drop, we propose an enhancement strategy involving the partial axial filling of gradient metal foam. Both analytical modeling and experimental investigation were employed to evaluate the effects of porosity, pore density, and gradient structure at various filling rates on the overall performance of thermoelectric generators. The results show that arranging metal foam with increasingly high frame density in the direction of fluid flow, rather than adopting increasingly sparse or constant structures, leads to improved voltage uniformity and reduced pressure drop. A positive gradient configuration with a pore density distribution of 5-10-20 PPI yielded the highest net power at 118.3 W, which is 12.5 % higher than that of metal foam with constant 20 PPI. Ultimately, empirical verification substantiates the comprehensive performance advantages of positive gradient configuration. For filling rates of 30 %, 60 %, and 100 %, pressure drop is reduced by 35.9 %, 33.4 %, and 29.2 %, respectively, in comparison to constant 20 PPI metal foam, despite a modest reduction in output power, which remains less than 3 %.

Suggested Citation

  • Yang, Wenlong & Xie, Changjun & Jin, Chenchen & Zhu, Wenchao & Li, Yang & Tang, Xinfeng, 2024. "Simulation and experimental study of thermoelectric generators with an axial gradient metal foam heat exchanger," Renewable Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011297
    DOI: 10.1016/j.renene.2024.121061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124011297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maduabuchi, Chika & Eneh, Chibuoke & Alrobaian, Abdulrahman Abdullah & Alkhedher, Mohammad, 2023. "Deep neural networks for quick and precise geometry optimization of segmented thermoelectric generators," Energy, Elsevier, vol. 263(PC).
    2. Yang, Wenlong & Zhu, WenChao & Li, Yang & Zhang, Leiqi & Zhao, Bo & Xie, Changjun & Yan, Yonggao & Huang, Liang, 2022. "Annular thermoelectric generator performance optimization analysis based on concentric annular heat exchanger," Energy, Elsevier, vol. 239(PB).
    3. Li, Yanzhe & Wang, Shixue & Zhao, Yulong & Yue, Like, 2022. "Effect of thermoelectric modules with different characteristics on the performance of thermoelectric generators inserted in the central flow region with porous foam copper," Applied Energy, Elsevier, vol. 327(C).
    4. Hu, Haitao & Zhao, Yaxin & Li, Yuhan, 2023. "Research progress on flow and heat transfer characteristics of fluids in metal foams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    5. Luo, Ding & Yan, Yuying & Li, Ying & Yang, Xuelin & Chen, Hao, 2023. "Exhaust channel optimization of the automobile thermoelectric generator to produce the highest net power," Energy, Elsevier, vol. 281(C).
    6. Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Xie, Changjun & Huang, Liang & Li, Yang & Xiong, Binyu, 2024. "Innovative design for thermoelectric power generation: Two-stage thermoelectric generator with variable twist ratio twisted tapes optimizing maximum output," Applied Energy, Elsevier, vol. 363(C).
    7. Li, Yanzhe & Wang, Shixue & Zhao, Yulong & Lu, Chi, 2017. "Experimental study on the influence of porous foam metal filled in the core flow region on the performance of thermoelectric generators," Applied Energy, Elsevier, vol. 207(C), pages 634-642.
    8. Demeke, Wabi & Ryu, Byungki & Ryu, Seunghwa, 2024. "Machine learning-based optimization of segmented thermoelectric power generators using temperature-dependent performance properties," Applied Energy, Elsevier, vol. 355(C).
    9. Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Li, Yang & Zhang, Rui & Huang, Liang & Xie, Changjun & Shi, Ying, 2024. "Taguchi optimization and thermoelectrical analysis of a pin fin annular thermoelectric generator for automotive waste heat recovery," Renewable Energy, Elsevier, vol. 220(C).
    10. Chen, Wei-Hsin & Chiou, Yi-Bin, 2020. "Geometry design for maximizing output power of segmented skutterudite thermoelectric generator by evolutionary computation," Applied Energy, Elsevier, vol. 274(C).
    11. Lin, Qiliang & Chen, Yi-Chung & Chen, Fangliang & DeGanyar, Tejav & Yin, Huiming, 2022. "Design and experiments of a thermoelectric-powered wireless sensor network platform for smart building envelope," Applied Energy, Elsevier, vol. 305(C).
    12. Chen, Wei-Hsin & Chiou, Yi-Bin & Chein, Rei-Yu & Uan, Jun-Yen & Wang, Xiao-Dong, 2022. "Power generation of thermoelectric generator with plate fins for recovering low-temperature waste heat," Applied Energy, Elsevier, vol. 306(PA).
    13. Zhu, WenChao & Yang, Wenlong & Yang, Yang & Li, Yang & Li, Hao & Shi, Ying & Yan, Yonggao & Xie, Changjun, 2022. "Economic configuration optimization of onboard annual thermoelectric generators under multiple operating conditions," Renewable Energy, Elsevier, vol. 197(C), pages 486-499.
    14. Ge, Ya & He, Kui & Xiao, Liehui & Yuan, Wuzhi & Huang, Si-Min, 2022. "Geometric optimization for the thermoelectric generator with variable cross-section legs by coupling finite element method and optimization algorithm," Renewable Energy, Elsevier, vol. 183(C), pages 294-303.
    15. Zhu, WenChao & Weng, Zebin & Li, Yang & Zhang, Leiqi & Zhao, Bo & Xie, Changjun & Shi, Ying & Huang, Liang & Yan, Yonggao, 2022. "Theoretical analysis of shape factor on performance of annular thermoelectric generators under different thermal boundary conditions," Energy, Elsevier, vol. 239(PD).
    16. Yang, Wenlong & Zhu, WenChao & Du, Banghua & Wang, Han & Xu, Lamei & Xie, Changjun & Shi, Ying, 2023. "Power generation of annular thermoelectric generator with silicone polymer thermal conductive oil applied in automotive waste heat recovery," Energy, Elsevier, vol. 282(C).
    17. Fan, Shifa & Gao, Yuanwen & Rezania, Alireza, 2021. "Thermoelectric performance and stress analysis on wearable thermoelectric generator under bending load," Renewable Energy, Elsevier, vol. 173(C), pages 581-595.
    18. He, Wei & Guo, Rui & Liu, Shengchun & Zhu, Kai & Wang, Shixue, 2020. "Temperature gradient characteristics and effect on optimal thermoelectric performance in exhaust power-generation systems," Applied Energy, Elsevier, vol. 261(C).
    19. Negash, Assmelash A. & Choi, Young & Kim, Tae Young, 2021. "Experimental investigation of optimal location of flow straightener from the aspects of power output and pressure drop characteristics of a thermoelectric generator," Energy, Elsevier, vol. 219(C).
    20. Chen, Wei-Hsin & Lin, Yen-Kuan & Luo, Ding & Jin, Liwen & Hoang, Anh Tuan & Saw, Lip Huat & Nižetić, Sandro, 2023. "Effects of material doping on the performance of thermoelectric generator with/without equal segments," Applied Energy, Elsevier, vol. 350(C).
    21. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    22. Zoui, Mohamed Amine & Bentouba, Said & Velauthapillai, Dhayalan & Zioui, Nadjet & Bourouis, Mahmoud, 2022. "Design and characterization of a novel finned tubular thermoelectric generator for waste heat recovery," Energy, Elsevier, vol. 253(C).
    23. He, Min & Wang, Enhua & Zhang, Yuanyin & Zhang, Wen & Zhang, Fujun & Zhao, Changlu, 2020. "Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine," Applied Energy, Elsevier, vol. 274(C).
    24. Alghamdi, Hisham & Maduabuchi, Chika & Okoli, Kingsley & Albaker, Abdullah & Makki, Emad & Alghassab, Mohammed & Alobaid, Mohammad & Alkhedher, Mohammad, 2023. "Pioneering sustainable power: Harnessing material innovations in double stage segmented thermoelectric generators for optimal 4E performance," Applied Energy, Elsevier, vol. 352(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Xie, Changjun & Huang, Liang & Li, Yang & Xiong, Binyu, 2024. "Innovative design for thermoelectric power generation: Two-stage thermoelectric generator with variable twist ratio twisted tapes optimizing maximum output," Applied Energy, Elsevier, vol. 363(C).
    2. Luo, Ding & Zhang, Haokang & Cao, Jin & Yan, Yuyin & Cao, Bingyang, 2024. "Numerical investigation and optimization of a hexagonal thermoelectric generator with diverging fins for exhaust waste heat recovery," Energy, Elsevier, vol. 301(C).
    3. Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Li, Yang & Zhang, Rui & Huang, Liang & Xie, Changjun & Shi, Ying, 2024. "Taguchi optimization and thermoelectrical analysis of a pin fin annular thermoelectric generator for automotive waste heat recovery," Renewable Energy, Elsevier, vol. 220(C).
    4. Yang, Wenlong & Zhu, WenChao & Du, Banghua & Wang, Han & Xu, Lamei & Xie, Changjun & Shi, Ying, 2023. "Power generation of annular thermoelectric generator with silicone polymer thermal conductive oil applied in automotive waste heat recovery," Energy, Elsevier, vol. 282(C).
    5. Zhao, Yulong & Zhang, Guoyin & Wen, Lei & Wang, Shixue & Wang, Yulin & Li, Yanzhe & Ge, Minghui, 2024. "Experimental study on thermoelectric characteristics of intermediate fluid thermoelectric generator," Applied Energy, Elsevier, vol. 365(C).
    6. Sourav Bhakta & Balaram Kundu, 2024. "A Review of Thermoelectric Generators in Automobile Waste Heat Recovery Systems for Improving Energy Utilization," Energies, MDPI, vol. 17(5), pages 1-46, February.
    7. He, Hongxi & Xie, Yongchuan & Zuo, Qingsong & Chen, Wei & Shen, Zhuang & Ma, Ying & Zhang, Hehui & Zhu, Guohui & Ouyang, Yixuan, 2024. "Optimization analysis for thermoelectric performance improvement of biconical segmented annular thermoelectric generator," Energy, Elsevier, vol. 306(C).
    8. Zhao, Yulong & Lu, Mingjie & Li, Yanzhe & Wang, Yulin & Ge, Minghui, 2023. "Numerical investigation of an exhaust thermoelectric generator with a perforated plate," Energy, Elsevier, vol. 263(PB).
    9. Wenlong Yang & Wenchao Zhu & Yang Yang & Liang Huang & Ying Shi & Changjun Xie, 2022. "Thermoelectric Performance Evaluation and Optimization in a Concentric Annular Thermoelectric Generator under Different Cooling Methods," Energies, MDPI, vol. 15(6), pages 1-21, March.
    10. Luo, Ding & Liu, Zerui & Cao, Jin & Yan, Yuying & Cao, Bingyang, 2024. "Performance investigation and optimization of an L-type thermoelectric generator," Energy, Elsevier, vol. 307(C).
    11. Luo, Ding & Li, Zheng & Yan, Yuying & Cao, Jin & Zhang, Haokang & Cao, Bingyang, 2024. "Performance analysis and optimization of an annular thermoelectric generator integrated with vapor chambers," Energy, Elsevier, vol. 307(C).
    12. Luo, Ding & Yang, Shuo & Yan, Yuying & Cao, Jin & Yang, Xuelin & Cao, Bingyang, 2024. "Performance improvement of the automotive thermoelectric generator system with a novel heat pipe configuration," Energy, Elsevier, vol. 306(C).
    13. Ye-Qi Zhang & Jiao Sun & Guang-Xu Wang & Tian-Hu Wang, 2022. "Advantage of a Thermoelectric Generator with Hybridization of Segmented Materials and Irregularly Variable Cross-Section Design," Energies, MDPI, vol. 15(8), pages 1-18, April.
    14. Hong, Bing-Hua & Huang, Xiao-Yan & He, Jian-Wei & Cai, Yang & Wang, Wei-Wei & Zhao, Fu-Yun, 2023. "Round-the-clock performance of solar thermoelectric wall with phase change material in subtropical climate: Critical analysis and parametric investigations," Energy, Elsevier, vol. 272(C).
    15. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Comprehensive comparison and applicable range of separating and coupling numerical models of thermoelectric generation device for waste heat recovery," Energy, Elsevier, vol. 304(C).
    16. Huang, Bin & Shen, Zu-Guo, 2022. "Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery," Energy, Elsevier, vol. 246(C).
    17. Ge, Minghui & Li, Zhenhua & Zhao, Yuntong & Xuan, Zhiwei & Li, Yanzhe & Zhao, Yulong, 2022. "Experimental study of thermoelectric generator with different numbers of modules for waste heat recovery," Applied Energy, Elsevier, vol. 322(C).
    18. Zhu, WenChao & Yang, Wenlong & Yang, Yang & Li, Yang & Li, Hao & Shi, Ying & Yan, Yonggao & Xie, Changjun, 2022. "Economic configuration optimization of onboard annual thermoelectric generators under multiple operating conditions," Renewable Energy, Elsevier, vol. 197(C), pages 486-499.
    19. Lin, Lin & Yao, Bing-Qing & Wang, Xiao-Dong & Lee, Duu-Jong, 2022. "Carrier transport model and novel design for micro thermoelectric generator with enhanced performance," Applied Energy, Elsevier, vol. 315(C).
    20. Wang, Xue & Zong, Yujie & Su, Wenbin & Wang, Chunlei & Wang, Hongchao, 2024. "Output and mechanical performance of thermoelectric generator under transient heat loads," Renewable Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.