Advantage of a Thermoelectric Generator with Hybridization of Segmented Materials and Irregularly Variable Cross-Section Design
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhu, Lei & Li, Huaqi & Chen, Sen & Tian, Xiaoyan & Kang, Xiaoya & Jiang, Xinbiao & Qiu, Suizheng, 2020. "Optimization analysis of a segmented thermoelectric generator based on genetic algorithm," Renewable Energy, Elsevier, vol. 156(C), pages 710-718.
- Hsu, Cheng-Ting & Huang, Gia-Yeh & Chu, Hsu-Shen & Yu, Ben & Yao, Da-Jeng, 2011. "An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator module," Applied Energy, Elsevier, vol. 88(12), pages 5173-5179.
- Yin, Tao & He, Zhi-Zhu, 2021. "Analytical model-based optimization of the thermoelectric cooler with temperature-dependent materials under different operating conditions," Applied Energy, Elsevier, vol. 299(C).
- Chen, Wei-Hsin & Chiou, Yi-Bin, 2020. "Geometry design for maximizing output power of segmented skutterudite thermoelectric generator by evolutionary computation," Applied Energy, Elsevier, vol. 274(C).
- Ge, Ya & He, Kui & Xiao, Liehui & Yuan, Wuzhi & Huang, Si-Min, 2022. "Geometric optimization for the thermoelectric generator with variable cross-section legs by coupling finite element method and optimization algorithm," Renewable Energy, Elsevier, vol. 183(C), pages 294-303.
- Ge, Ya & Liu, Zhichun & Sun, Henan & Liu, Wei, 2018. "Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm," Energy, Elsevier, vol. 147(C), pages 1060-1069.
- Ma, Xiaonan & Shu, Gequn & Tian, Hua & Xu, Wen & Chen, Tianyu, 2019. "Performance assessment of engine exhaust-based segmented thermoelectric generators by length ratio optimization," Applied Energy, Elsevier, vol. 248(C), pages 614-625.
- Wang, Xuejian & Qi, Ji & Deng, Wei & Li, Gongping & Gao, Xudong & He, Luanxuan & Zhang, Shixu, 2021. "An optimized design approach concerning thermoelectric generators with frustum-shaped legs based on three-dimensional multiphysics model," Energy, Elsevier, vol. 233(C).
- Ibeagwu, Onyebuchi Isreal, 2019. "Modelling and comprehensive analysis of TEGs with diverse variable leg geometry," Energy, Elsevier, vol. 180(C), pages 90-106.
- Tian, Hua & Sun, Xiuxiu & Jia, Qi & Liang, Xingyu & Shu, Gequn & Wang, Xu, 2015. "Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine," Energy, Elsevier, vol. 84(C), pages 121-130.
- Yin, Tao & Li, Zhen-Ming & Peng, Peng & Liu, Wei & Shao, Yu-Ying & He, Zhi-Zhu, 2021. "Performance analysis and design optimization of a compact thermoelectric generator with T-Shaped configuration," Energy, Elsevier, vol. 229(C).
- Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
- Khalil, ALkhadher & Elhassnaoui, Ahmed & Yadir, Said & Abdellatif, Obbadi & Errami, Youssef & Sahnoun, Smail, 2021. "Performance comparison of TEGs for diverse variable leg geometry with the same leg volume," Energy, Elsevier, vol. 224(C).
- Karana, Dhruv Raj & Sahoo, Rashmi Rekha, 2019. "Influence of geometric parameter on the performance of a new asymmetrical and segmented thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 90-99.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cotfas, D.T. & Enesca, A. & Cotfas, P.A., 2024. "Enhancing the performance of the solar thermoelectric generator in unconcentrated and concentrated light," Renewable Energy, Elsevier, vol. 221(C).
- Ye-Qi Zhang & Guang-Xu Wang & Ru-Yi Liu & Tian-Hu Wang, 2023. "Operational Parameter Analysis and Performance Optimization of Zinc–Bromine Redox Flow Battery," Energies, MDPI, vol. 16(7), pages 1-18, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Maduabuchi, Chika, 2022. "Thermo-mechanical optimization of thermoelectric generators using deep learning artificial intelligence algorithms fed with verified finite element simulation data," Applied Energy, Elsevier, vol. 315(C).
- Maduabuchi, Chika & Eneh, Chibuoke & Alrobaian, Abdulrahman Abdullah & Alkhedher, Mohammad, 2023. "Deep neural networks for quick and precise geometry optimization of segmented thermoelectric generators," Energy, Elsevier, vol. 263(PC).
- Ge, Ya & He, Kui & Xiao, Liehui & Yuan, Wuzhi & Huang, Si-Min, 2022. "Geometric optimization for the thermoelectric generator with variable cross-section legs by coupling finite element method and optimization algorithm," Renewable Energy, Elsevier, vol. 183(C), pages 294-303.
- Junpeng Liu & Yajing Sun & Gang Chen & Pengcheng Zhai, 2023. "Performance Analysis of Variable Cross-Section TEGs under Constant Heat Flux Conditions," Energies, MDPI, vol. 16(11), pages 1-16, June.
- Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
- Zhu, Yuxiao & Newbrook, Daniel W. & Dai, Peng & de Groot, C.H. Kees & Huang, Ruomeng, 2022. "Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator," Applied Energy, Elsevier, vol. 305(C).
- Ge, Ya & Xiao, Qiyin & Wang, Wenhao & Lin, Yousheng & Huang, Si-Min, 2022. "Design of high-performance photovoltaic-thermoelectric hybrid systems using multi-objective genetic algorithm," Renewable Energy, Elsevier, vol. 200(C), pages 136-145.
- Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ren, Fengsheng & Yang, Yue & Ma, Bijian & Zhu, Yonggang, 2023. "Performance optimization for a novel two-stage thermoelectric generator with different PCMs embedding modes," Energy, Elsevier, vol. 281(C).
- Chen, Wei-Hsin & Chiou, Yi-Bin, 2020. "Geometry design for maximizing output power of segmented skutterudite thermoelectric generator by evolutionary computation," Applied Energy, Elsevier, vol. 274(C).
- Ge, Ya & Lin, Yousheng & He, Qing & Wang, Wenhao & Chen, Jiechao & Huang, Si-Min, 2021. "Geometric optimization of segmented thermoelectric generators for waste heat recovery systems using genetic algorithm," Energy, Elsevier, vol. 233(C).
- Luo, Yang & Li, Linlin & Chen, Yiping & Kim, Chang Nyung, 2022. "Influence of geometric parameter and contact resistances on the thermal-electric behavior of a segmented TEG," Energy, Elsevier, vol. 254(PC).
- Shittu, Samson & Li, Guiqiang & Xuan, Qindong & Zhao, Xudong & Ma, Xiaoli & Cui, Yu, 2020. "Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux," Energy, Elsevier, vol. 199(C).
- Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
- Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Li, Yang & Zhang, Rui & Huang, Liang & Xie, Changjun & Shi, Ying, 2024. "Taguchi optimization and thermoelectrical analysis of a pin fin annular thermoelectric generator for automotive waste heat recovery," Renewable Energy, Elsevier, vol. 220(C).
- Nan, Bohang & Guo, Tao & Deng, Hao & Zhang, Guangbing & Shi, Ran & Xin, Jiakai & Tang, Chen & Xu, Guiying, 2024. "Output performance improvement for thermoelectric transistor with the consideration of the Thomson effect and geometry optimization," Applied Energy, Elsevier, vol. 357(C).
- Chen, Wei-Hsin & Lin, Yen-Kuan & Luo, Ding & Jin, Liwen & Hoang, Anh Tuan & Saw, Lip Huat & Nižetić, Sandro, 2023. "Effects of material doping on the performance of thermoelectric generator with/without equal segments," Applied Energy, Elsevier, vol. 350(C).
- Wang, Xuejian & Qi, Ji & Deng, Wei & Li, Gongping & Gao, Xudong & He, Luanxuan & Zhang, Shixu, 2021. "An optimized design approach concerning thermoelectric generators with frustum-shaped legs based on three-dimensional multiphysics model," Energy, Elsevier, vol. 233(C).
- Yin, Tao & Li, Zhen-Ming & Peng, Peng & Liu, Wei & Shao, Yu-Ying & He, Zhi-Zhu, 2021. "Performance analysis and design optimization of a compact thermoelectric generator with T-Shaped configuration," Energy, Elsevier, vol. 229(C).
- Chika Maduabuchi & Hassan Fagehi & Ibrahim Alatawi & Mohammad Alkhedher, 2022. "Predicting the Optimal Performance of a Concentrated Solar Segmented Variable Leg Thermoelectric Generator Using Neural Networks," Energies, MDPI, vol. 15(16), pages 1-25, August.
- Jia, Yuan & Wang, Baojie & Tian, Jinpeng & Song, Qiuming & Chen, Yulong & Zhang, Wenwei & Wang, Cheng & Sun, Hao & Zhang, Zhixing, 2024. "A thermal conductivity varying 3D numerical model for parametric study of a silicon-based nano thermoelectric generator," Energy, Elsevier, vol. 293(C).
More about this item
Keywords
thermoelectric generator; waste heat recovery; segmented material; irregularly variable cross-section; optimization; genetic algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2944-:d:795823. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.