IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v274y2020ics0306261920308102.html
   My bibliography  Save this article

Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine

Author

Listed:
  • He, Min
  • Wang, Enhua
  • Zhang, Yuanyin
  • Zhang, Wen
  • Zhang, Fujun
  • Zhao, Changlu

Abstract

Thermoelectric generators can be used for low-grade energy conversion. However, the design of compact and highly efficient thermoelectric generators is difficult. In this study, the performance characteristics of a multilayer thermoelectric generator are investigated for the exhaust heat recovery of a heavy-duty diesel engine. First, a mathematical model based on the finite volume method is established according to a designed thermoelectric generator. Subsequently, the working performance of the thermoelectric generator is analysed at the rated engine point. Next, the effects of some key parameters for the heat transfer process are evaluated, and the performance of the thermoelectric generator under various engine conditions is studied. Finally, the potential for the power output is estimated based on the world harmonised transient cycle. The results indicate that the output power increases with the engine load, whereas it is insensitive to the variation in the engine speed. The effects of the fin spacing and the fin height of the plain-fin heat exchanger are more significant compared with that of the fin thickness. The working parameters of the thermoelectric generator fluctuate significantly under transient conditions, and the thermoelectric conversion efficiency varies from 1.41% to 4.12%. The development of thermoelectric materials with high efficiency is critical. Furthermore, the results of this study indicate that the improvement in heat transfer between fluids and solid thermoelectric materials is important. The methodology and outcomes of this study can serve as a reference for the design and application of thermoelectric generators.

Suggested Citation

  • He, Min & Wang, Enhua & Zhang, Yuanyin & Zhang, Wen & Zhang, Fujun & Zhao, Changlu, 2020. "Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine," Applied Energy, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:appene:v:274:y:2020:i:c:s0306261920308102
    DOI: 10.1016/j.apenergy.2020.115298
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920308102
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lan, Song & Yang, Zhijia & Stobart, Richard & Chen, Rui, 2018. "Prediction of the fuel economy potential for a skutterudite thermoelectric generator in light-duty vehicle applications," Applied Energy, Elsevier, vol. 231(C), pages 68-79.
    2. Zaher, M.H. & Abdelsalam, M.Y. & Cotton, J.S., 2020. "Study of the effects of axial conduction on the performance of thermoelectric generators integrated in a heat exchanger for waste heat recovery applications," Applied Energy, Elsevier, vol. 261(C).
    3. Compadre Torrecilla, Marcos & Montecucco, Andrea & Siviter, Jonathan & Knox, Andrew R. & Strain, Andrew, 2019. "Novel model and maximum power tracking algorithm for thermoelectric generators operated under constant heat flux," Applied Energy, Elsevier, vol. 256(C).
    4. Pacheco, N. & Brito, F.P. & Vieira, R. & Martins, J. & Barbosa, H. & Goncalves, L.M., 2020. "Compact automotive thermoelectric generator with embedded heat pipes for thermal control," Energy, Elsevier, vol. 197(C).
    5. Cózar, I.R. & Pujol, T. & Lehocky, M., 2018. "Numerical analysis of the effects of electrical and thermal configurations of thermoelectric modules in large-scale thermoelectric generators," Applied Energy, Elsevier, vol. 229(C), pages 264-280.
    6. Sargolzaeiaval, Yasaman & Padmanabhan Ramesh, Viswanath & Neumann, Taylor V. & Misra, Veena & Vashaee, Daryoosh & Dickey, Michael D. & Öztürk, Mehmet C., 2020. "Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects," Applied Energy, Elsevier, vol. 262(C).
    7. Lan, Song & Smith, Andy & Stobart, Richard & Chen, Rui, 2019. "Feasibility study on a vehicular thermoelectric generator for both waste heat recovery and engine oil warm-up," Applied Energy, Elsevier, vol. 242(C), pages 273-284.
    8. Wang, Yiping & Li, Shuai & Xie, Xu & Deng, Yadong & Liu, Xun & Su, Chuqi, 2018. "Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger," Applied Energy, Elsevier, vol. 218(C), pages 391-401.
    9. Lan, Song & Yang, Zhijia & Chen, Rui & Stobart, Richard, 2018. "A dynamic model for thermoelectric generator applied to vehicle waste heat recovery," Applied Energy, Elsevier, vol. 210(C), pages 327-338.
    10. Shu, Gequn & Ma, Xiaonan & Tian, Hua & Yang, Haoqi & Chen, Tianyu & Li, Xiaoya, 2018. "Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery," Energy, Elsevier, vol. 160(C), pages 612-624.
    11. Karthick, Krishnadass & Suresh, S. & Singh, Harjit & Joy, Grashin C & Dhanuskodi, R., 2019. "Theoretical and experimental evaluation of thermal interface materials and other influencing parameters for thermoelectric generator system," Renewable Energy, Elsevier, vol. 134(C), pages 25-43.
    12. Chen, Wei-Hsin & Lin, Yi-Xian & Wang, Xiao-Dong & Lin, Yu-Li, 2019. "A comprehensive analysis of the performance of thermoelectric generators with constant and variable properties," Applied Energy, Elsevier, vol. 241(C), pages 11-24.
    13. Fernández-Yáñez, P. & Armas, O. & Kiwan, R. & Stefanopoulou, A.G. & Boehman, A.L., 2018. "A thermoelectric generator in exhaust systems of spark-ignition and compression-ignition engines. A comparison with an electric turbo-generator," Applied Energy, Elsevier, vol. 229(C), pages 80-87.
    14. Ponnusamy, P. & de Boor, J. & Müller, E., 2020. "Using the constant properties model for accurate performance estimation of thermoelectric generator elements," Applied Energy, Elsevier, vol. 262(C).
    15. He, Wei & Guo, Rui & Liu, Shengchun & Zhu, Kai & Wang, Shixue, 2020. "Temperature gradient characteristics and effect on optimal thermoelectric performance in exhaust power-generation systems," Applied Energy, Elsevier, vol. 261(C).
    16. Yang, Yurong & Wang, Shixue & Zhu, Yu, 2020. "Evaluation method for assessing heat transfer enhancement effect on performance improvement of thermoelectric generator systems," Applied Energy, Elsevier, vol. 263(C).
    17. Martí Comamala & Ivan Ruiz Cózar & Albert Massaguer & Eduard Massaguer & Toni Pujol, 2018. "Effects of Design Parameters on Fuel Economy and Output Power in an Automotive Thermoelectric Generator," Energies, MDPI, vol. 11(12), pages 1-28, November.
    18. B. Hinterleitner & I. Knapp & M. Poneder & Yongpeng Shi & H. Müller & G. Eguchi & C. Eisenmenger-Sittner & M. Stöger-Pollach & Y. Kakefuda & N. Kawamoto & Q. Guo & T. Baba & T. Mori & Sami Ullah & Xin, 2019. "Thermoelectric performance of a metastable thin-film Heusler alloy," Nature, Nature, vol. 576(7785), pages 85-90, December.
    19. Ma, Xiaonan & Shu, Gequn & Tian, Hua & Xu, Wen & Chen, Tianyu, 2019. "Performance assessment of engine exhaust-based segmented thermoelectric generators by length ratio optimization," Applied Energy, Elsevier, vol. 248(C), pages 614-625.
    20. Ando Junior, O.H. & Maran, A.L.O. & Henao, N.C., 2018. "A review of the development and applications of thermoelectric microgenerators for energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 376-393.
    21. He, Wei & Guo, Rui & Takasu, Hiroki & Kato, Yukitaka & Wang, Shixue, 2019. "Performance optimization of common plate-type thermoelectric generator in vehicle exhaust power generation systems," Energy, Elsevier, vol. 175(C), pages 1153-1163.
    22. Zhao, Yulong & Wang, Shixue & Ge, Minghui & Liang, Zhaojun & Liang, Yifan & Li, Yanzhe, 2019. "Performance investigation of an intermediate fluid thermoelectric generator for automobile exhaust waste heat recovery," Applied Energy, Elsevier, vol. 239(C), pages 425-433.
    23. Liu, Shuang & Hu, Bingkun & Liu, Dawei & Li, Fu & Li, Jing-Feng & Li, Bo & Li, Liangliang & Lin, Yuan-Hua & Nan, Ce-Wen, 2018. "Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference," Applied Energy, Elsevier, vol. 225(C), pages 600-610.
    24. Muralidhar, Nischal & Himabindu, M. & Ravikrishna, R.V., 2018. "Modeling of a hybrid electric heavy duty vehicle to assess energy recovery using a thermoelectric generator," Energy, Elsevier, vol. 148(C), pages 1046-1059.
    25. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).
    26. Wang, Ruochen & Yu, Wei & Meng, Xiangpeng, 2018. "Performance investigation and energy optimization of a thermoelectric generator for a mild hybrid vehicle," Energy, Elsevier, vol. 162(C), pages 1016-1028.
    27. Watson, Thomas C. & Vincent, Joshua N. & Lee, Hohyun, 2019. "Effect of DC-DC voltage step-up converter impedance on thermoelectric energy harvester system design strategy," Applied Energy, Elsevier, vol. 239(C), pages 898-907.
    28. Yoo, Chung-Yul & Yeon, Changho & Jin, Younghwan & Kim, Yeongseon & Song, Jinseop & Yoon, Hana & Park, Sang Hyun & Beltrán-Pitarch, Braulio & García-Cañadas, Jorge & Min, Gao, 2019. "Determination of the thermoelectric properties of a skutterudite-based device at practical operating temperatures by impedance spectroscopy," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yanzhe & Wang, Shixue & Zhao, Yulong & Yue, Like, 2022. "Effect of thermoelectric modules with different characteristics on the performance of thermoelectric generators inserted in the central flow region with porous foam copper," Applied Energy, Elsevier, vol. 327(C).
    2. Mei, Shuxue & Lu, Xiaorui & Zhu, Yu & Wang, Shixue, 2021. "Thermodynamic assessment of a system configuration strategy for a cogeneration system combining SOFC, thermoelectric generator, and absorption heat pump," Applied Energy, Elsevier, vol. 302(C).
    3. Huang, Bin & Shen, Zu-Guo, 2022. "Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery," Energy, Elsevier, vol. 246(C).
    4. Sofia Orjuela-Abril & Ana Torregroza-Espinosa & Jorge Duarte-Forero, 2023. "Innovative Technology Strategies for the Sustainable Development of Self-Produced Energy in the Colombian Industry," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    5. Li, Ligeng & Tian, Hua & Shi, Lingfeng & Wang, Jingyu & Li, Min & Shu, Gequn, 2021. "Adaptive flow assignment for CO2 transcritical power cycle (CTPC): An engine operational profile-based off-design study," Energy, Elsevier, vol. 225(C).
    6. Lin, Lin & Yao, Bing-Qing & Wang, Xiao-Dong & Lee, Duu-Jong, 2022. "Carrier transport model and novel design for micro thermoelectric generator with enhanced performance," Applied Energy, Elsevier, vol. 315(C).
    7. Ge, Minghui & Li, Zhenhua & Zhao, Yuntong & Xuan, Zhiwei & Li, Yanzhe & Zhao, Yulong, 2022. "Experimental study of thermoelectric generator with different numbers of modules for waste heat recovery," Applied Energy, Elsevier, vol. 322(C).
    8. Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Xie, Changjun & Huang, Liang & Li, Yang & Xiong, Binyu, 2024. "Innovative design for thermoelectric power generation: Two-stage thermoelectric generator with variable twist ratio twisted tapes optimizing maximum output," Applied Energy, Elsevier, vol. 363(C).
    9. Garud, Kunal Sandip & Seo, Jae-Hyeong & Bang, You-Ma & Pyo, Young-Dug & Cho, Chong-Pyo & Lee, Moo-Yeon & Lee, Dong-Yeon, 2022. "Energy, exergy, environmental sustainability and economic analyses for automotive thermoelectric generator system with various configurations," Energy, Elsevier, vol. 244(PA).
    10. Zhao, Yulong & Zhang, Guoyin & Wen, Lei & Wang, Shixue & Wang, Yulin & Li, Yanzhe & Ge, Minghui, 2024. "Experimental study on thermoelectric characteristics of intermediate fluid thermoelectric generator," Applied Energy, Elsevier, vol. 365(C).
    11. Xu Ping & Baofeng Yao & Hongguang Zhang & Hongzhi Zhang & Jia Liang & Meng Yuan & Kai Niu & Yan Wang, 2022. "Comprehensive Performance Assessment of Dual Loop Organic Rankine Cycle (DORC) for CNG Engine: Energy, Thermoeconomic and Environment," Energies, MDPI, vol. 15(21), pages 1-28, October.
    12. Lan, Yuncheng & Lu, Junhui & Li, Junming & Wang, Suilin, 2022. "Effects of temperature-dependent thermal properties and the side leg heat dissipation on the performance of the thermoelectric generator," Energy, Elsevier, vol. 243(C).
    13. Azeez mohammed Hussein, Hind & Zulkifli, Rozli & Faizal Bin Wan Mahmood, Wan Mohd & Ajeel, Raheem K., 2022. "Structure parameters and designs and their impact on performance of different heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Yang, Bo & Zeng, Chunyuan & Li, Danyang & Guo, Zhengxun & Chen, Yijun & Shu, Hongchun & Cao, Pulin & Li, Zilin, 2022. "Improved immune genetic algorithm based TEG system reconfiguration under non-uniform temperature distribution," Applied Energy, Elsevier, vol. 325(C).
    15. Zhao, Yulong & Lu, Mingjie & Li, Yanzhe & Ge, Minghui & Xie, Liyao & Liu, Liansheng, 2021. "Characteristics analysis of an exhaust thermoelectric generator system with heat transfer fluid circulation," Applied Energy, Elsevier, vol. 304(C).
    16. Zhao, Yulong & Lu, Mingjie & Li, Yanzhe & Wang, Yulin & Ge, Minghui, 2023. "Numerical investigation of an exhaust thermoelectric generator with a perforated plate," Energy, Elsevier, vol. 263(PB).
    17. Zhong, Fanghao & Liu, Zhuo & Zhao, Shuqi & Ai, Tianchao & Zou, Haoyu & Qu, Ming & Wei, Xiang & Song, Yangfan & Chen, Hongwei, 2024. "A novel concentrated photovoltaic and ionic thermocells hybrid system for full-spectrum solar cascade utilization," Applied Energy, Elsevier, vol. 363(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ezzitouni, S. & Fernández-Yáñez, P. & Sánchez, L. & Armas, O., 2020. "Global energy balance in a diesel engine with a thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    2. Luo, Ding & Wang, Ruochen & Yan, Yuying & Yu, Wei & Zhou, Weiqi, 2021. "Transient numerical modelling of a thermoelectric generator system used for automotive exhaust waste heat recovery," Applied Energy, Elsevier, vol. 297(C).
    3. Garud, Kunal Sandip & Seo, Jae-Hyeong & Bang, You-Ma & Pyo, Young-Dug & Cho, Chong-Pyo & Lee, Moo-Yeon & Lee, Dong-Yeon, 2022. "Energy, exergy, environmental sustainability and economic analyses for automotive thermoelectric generator system with various configurations," Energy, Elsevier, vol. 244(PA).
    4. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    5. Lan, Song & Li, Qingshan & Guo, Xin & Wang, Shukun & Chen, Rui, 2023. "Fuel saving potential analysis of bifunctional vehicular waste heat recovery system using thermoelectric generator and organic Rankine cycle," Energy, Elsevier, vol. 263(PB).
    6. Lan, Song & Stobart, Richard & Wang, Xiaonan, 2022. "Matching and optimization for a thermoelectric generator applied in an extended-range electric vehicle for waste heat recovery," Applied Energy, Elsevier, vol. 313(C).
    7. Zhao, Yulong & Zhang, Guoyin & Wen, Lei & Wang, Shixue & Wang, Yulin & Li, Yanzhe & Ge, Minghui, 2024. "Experimental study on thermoelectric characteristics of intermediate fluid thermoelectric generator," Applied Energy, Elsevier, vol. 365(C).
    8. Huang, Bin & Shen, Zu-Guo, 2022. "Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery," Energy, Elsevier, vol. 246(C).
    9. Samir Ezzitouni & Pablo Fernández-Yáñez & Luis Sánchez Rodríguez & Octavio Armas & Javier de las Morenas & Eduard Massaguer & Albert Massaguer, 2021. "Electrical Modelling and Mismatch Effects of Thermoelectric Modules on Performance of a Thermoelectric Generator for Energy Recovery in Diesel Exhaust Systems," Energies, MDPI, vol. 14(11), pages 1-15, May.
    10. Ivan Ruiz Cózar & Toni Pujol & Eduard Massaguer & Albert Massaguer & Lino Montoro & Jose Ramon González & Martí Comamala & Samir Ezzitouni, 2021. "Effects of Module Spatial Distribution on the Energy Efficiency and Electrical Output of Automotive Thermoelectric Generators," Energies, MDPI, vol. 14(8), pages 1-16, April.
    11. Aljaghtham, Mutabe & Celik, Emrah, 2020. "Design optimization of oil pan thermoelectric generator to recover waste heat from internal combustion engines," Energy, Elsevier, vol. 200(C).
    12. Martí Comamala & Ivan Ruiz Cózar & Albert Massaguer & Eduard Massaguer & Toni Pujol, 2018. "Effects of Design Parameters on Fuel Economy and Output Power in an Automotive Thermoelectric Generator," Energies, MDPI, vol. 11(12), pages 1-28, November.
    13. Chetty, Raju & Nagase, Kazuo & Aihara, Makoto & Jood, Priyanka & Takazawa, Hiroyuki & Ohta, Michihiro & Yamamoto, Atsushi, 2020. "Mechanically durable thermoelectric power generation module made of Ni-based alloy as a reference for reliable testing," Applied Energy, Elsevier, vol. 260(C).
    14. Luo, Ding & Yan, Yuying & Li, Ying & Yang, Xuelin & Chen, Hao, 2023. "Exhaust channel optimization of the automobile thermoelectric generator to produce the highest net power," Energy, Elsevier, vol. 281(C).
    15. Buchalik, Ryszard & Nowak, Grzegorz & Nowak, Iwona, 2021. "Mathematical model of a thermoelectric system based on steady- and rapid-state measurements," Applied Energy, Elsevier, vol. 293(C).
    16. Luo, Ding & Wang, Ruochen & Yu, Wei & Zhou, Weiqi, 2020. "A numerical study on the performance of a converging thermoelectric generator system used for waste heat recovery," Applied Energy, Elsevier, vol. 270(C).
    17. Chen, Wei-Hsin & Chiou, Yi-Bin, 2020. "Geometry design for maximizing output power of segmented skutterudite thermoelectric generator by evolutionary computation," Applied Energy, Elsevier, vol. 274(C).
    18. Zhao, Yulong & Lu, Mingjie & Li, Yanzhe & Ge, Minghui & Xie, Liyao & Liu, Liansheng, 2021. "Characteristics analysis of an exhaust thermoelectric generator system with heat transfer fluid circulation," Applied Energy, Elsevier, vol. 304(C).
    19. Martí Comamala & Toni Pujol & Ivan Ruiz Cózar & Eduard Massaguer & Albert Massaguer, 2018. "Power and Fuel Economy of a Radial Automotive Thermoelectric Generator: Experimental and Numerical Studies," Energies, MDPI, vol. 11(10), pages 1-21, October.
    20. Yang, Wenlong & Zhu, WenChao & Du, Banghua & Wang, Han & Xu, Lamei & Xie, Changjun & Shi, Ying, 2023. "Power generation of annular thermoelectric generator with silicone polymer thermal conductive oil applied in automotive waste heat recovery," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:274:y:2020:i:c:s0306261920308102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.