IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223017942.html
   My bibliography  Save this article

Power generation of annular thermoelectric generator with silicone polymer thermal conductive oil applied in automotive waste heat recovery

Author

Listed:
  • Yang, Wenlong
  • Zhu, WenChao
  • Du, Banghua
  • Wang, Han
  • Xu, Lamei
  • Xie, Changjun
  • Shi, Ying

Abstract

The annular thermoelectric generator (ATEG) matches the shape of the exhaust pipe. To improve the power generation efficiency of the ATEG in automobiles, a scheme is proposed to use a silicone polymer-based thermal conductive oil to transfer heat from the exhaust. Based on this concept, a new type of concentric tube heat exchanger is designed. A finite element model of the new system is established by considering temperature gradients, temperature dependence, and fluid resistance characteristics. Numerical simulations are performed to investigate the effects of exhaust parameters, thermal oil parameters, and heat exchanger structure on thermoelectric performance. The findings demonstrate a 15.2% increase in maximum output power of the new generator compared to a conventional ATEG, accompanied by a 19% decrease in the optimal thermoelectric module area. Furthermore, the net power first increases and then decreases with increasing thermal oil mass flow rate. The thermal oil mass flow rate can be adjusted in real-time based on fluctuations in exhaust parameters to achieve peak net output power. Finally, optimal fitting relationships between the heat exchanger dimensionless diameter and the total diameter, as well as between exhaust parameters and the optimal thermal oil mass flow rate, are obtained through parameter analysis and derivation.

Suggested Citation

  • Yang, Wenlong & Zhu, WenChao & Du, Banghua & Wang, Han & Xu, Lamei & Xie, Changjun & Shi, Ying, 2023. "Power generation of annular thermoelectric generator with silicone polymer thermal conductive oil applied in automotive waste heat recovery," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017942
    DOI: 10.1016/j.energy.2023.128400
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223017942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Wenlong & Zhu, WenChao & Li, Yang & Zhang, Leiqi & Zhao, Bo & Xie, Changjun & Yan, Yonggao & Huang, Liang, 2022. "Annular thermoelectric generator performance optimization analysis based on concentric annular heat exchanger," Energy, Elsevier, vol. 239(PB).
    2. Chen, Wei-Hsin & Wang, Chi-Ming & Lee, Da-Sheng & Kwon, Eilhann E. & Ashokkumar, Veeramuthu & Culaba, Alvin B., 2022. "Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins," Applied Energy, Elsevier, vol. 314(C).
    3. Yousefi, Esmaeil & Nejad, Ali Abbas & Rezania, Alireza, 2022. "Higher power output in thermoelectric generator integrated with phase change material and metal foams under transient boundary condition," Energy, Elsevier, vol. 256(C).
    4. Li, Yanzhe & Wang, Shixue & Zhao, Yulong & Lu, Chi, 2017. "Experimental study on the influence of porous foam metal filled in the core flow region on the performance of thermoelectric generators," Applied Energy, Elsevier, vol. 207(C), pages 634-642.
    5. Meng, Jing-Hui & Gao, De-Yang & Liu, Yan & Zhang, Kai & Lu, Gui, 2022. "Heat transfer mechanism and structure design of phase change materials to improve thermoelectric device performance," Energy, Elsevier, vol. 245(C).
    6. Cózar, I.R. & Pujol, T. & Lehocky, M., 2018. "Numerical analysis of the effects of electrical and thermal configurations of thermoelectric modules in large-scale thermoelectric generators," Applied Energy, Elsevier, vol. 229(C), pages 264-280.
    7. Chen, Wei-Hsin & Chiou, Yi-Bin & Chein, Rei-Yu & Uan, Jun-Yen & Wang, Xiao-Dong, 2022. "Power generation of thermoelectric generator with plate fins for recovering low-temperature waste heat," Applied Energy, Elsevier, vol. 306(PA).
    8. He, Wei & Guo, Rui & Takasu, Hiroki & Kato, Yukitaka & Wang, Shixue, 2019. "Performance optimization of common plate-type thermoelectric generator in vehicle exhaust power generation systems," Energy, Elsevier, vol. 175(C), pages 1153-1163.
    9. Zhu, WenChao & Yang, Wenlong & Yang, Yang & Li, Yang & Li, Hao & Shi, Ying & Yan, Yonggao & Xie, Changjun, 2022. "Economic configuration optimization of onboard annual thermoelectric generators under multiple operating conditions," Renewable Energy, Elsevier, vol. 197(C), pages 486-499.
    10. Ge, Ya & He, Kui & Xiao, Liehui & Yuan, Wuzhi & Huang, Si-Min, 2022. "Geometric optimization for the thermoelectric generator with variable cross-section legs by coupling finite element method and optimization algorithm," Renewable Energy, Elsevier, vol. 183(C), pages 294-303.
    11. Luo, Ding & Wang, Ruochen & Yu, Wei & Zhou, Weiqi, 2020. "A numerical study on the performance of a converging thermoelectric generator system used for waste heat recovery," Applied Energy, Elsevier, vol. 270(C).
    12. Zhu, WenChao & Weng, Zebin & Li, Yang & Zhang, Leiqi & Zhao, Bo & Xie, Changjun & Shi, Ying & Huang, Liang & Yan, Yonggao, 2022. "Theoretical analysis of shape factor on performance of annular thermoelectric generators under different thermal boundary conditions," Energy, Elsevier, vol. 239(PD).
    13. Xu, Haowei & Zhang, Qiang & Yi, Longbing & Huang, Shaolin & Yang, Hao & Li, Yanan & Guo, Zhe & Hu, Haoyang & Sun, Peng & Tan, Xiaojian & Liu, Guo-qiang & Song, Kun & Jiang, Jun, 2022. "High performance of Bi2Te3-based thermoelectric generator owing to pressure in fabrication process," Applied Energy, Elsevier, vol. 326(C).
    14. Zhao, Yulong & Lu, Mingjie & Li, Yanzhe & Ge, Minghui & Xie, Liyao & Liu, Liansheng, 2021. "Characteristics analysis of an exhaust thermoelectric generator system with heat transfer fluid circulation," Applied Energy, Elsevier, vol. 304(C).
    15. Daniel Kraemer & Qing Jie & Kenneth McEnaney & Feng Cao & Weishu Liu & Lee A. Weinstein & James Loomis & Zhifeng Ren & Gang Chen, 2016. "Concentrating solar thermoelectric generators with a peak efficiency of 7.4%," Nature Energy, Nature, vol. 1(11), pages 1-8, November.
    16. He, Wei & Guo, Rui & Liu, Shengchun & Zhu, Kai & Wang, Shixue, 2020. "Temperature gradient characteristics and effect on optimal thermoelectric performance in exhaust power-generation systems," Applied Energy, Elsevier, vol. 261(C).
    17. Negash, Assmelash A. & Choi, Young & Kim, Tae Young, 2021. "Experimental investigation of optimal location of flow straightener from the aspects of power output and pressure drop characteristics of a thermoelectric generator," Energy, Elsevier, vol. 219(C).
    18. Huang, Bin & Shen, Zu-Guo, 2022. "Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery," Energy, Elsevier, vol. 246(C).
    19. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
    20. Jia, Xiaodong & Guo, Qiuting, 2020. "Design study of Bismuth-Telluride-based thermoelectric generators based on thermoelectric and mechanical performance," Energy, Elsevier, vol. 190(C).
    21. Luo, Ding & Sun, Zeyu & Wang, Ruochen, 2022. "Performance investigation of a thermoelectric generator system applied in automobile exhaust waste heat recovery," Energy, Elsevier, vol. 238(PB).
    22. Zhao, Yulong & Wang, Shixue & Ge, Minghui & Liang, Zhaojun & Liang, Yifan & Li, Yanzhe, 2019. "Performance investigation of an intermediate fluid thermoelectric generator for automobile exhaust waste heat recovery," Applied Energy, Elsevier, vol. 239(C), pages 425-433.
    23. Huang, Kuo & Yan, Yuying & Wang, Guohua & Li, Bo, 2021. "Improving transient performance of thermoelectric generator by integrating phase change material," Energy, Elsevier, vol. 219(C).
    24. Fernández-Yañez, Pablo & Armas, Octavio & Capetillo, Azael & Martínez-Martínez, Simón, 2018. "Thermal analysis of a thermoelectric generator for light-duty diesel engines," Applied Energy, Elsevier, vol. 226(C), pages 690-702.
    25. Karana, Dhruv Raj & Sahoo, Rashmi Rekha, 2019. "Influence of geometric parameter on the performance of a new asymmetrical and segmented thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 90-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xinxin & Wang, Ke & Shen, Zuguo, 2024. "A novel strategy of inserting radiation shields to enhance the performance of thermoelectric generator systems for industrial high-temperature heat recovery," Energy, Elsevier, vol. 301(C).
    2. Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Li, Yang & Zhang, Rui & Huang, Liang & Xie, Changjun & Shi, Ying, 2024. "Taguchi optimization and thermoelectrical analysis of a pin fin annular thermoelectric generator for automotive waste heat recovery," Renewable Energy, Elsevier, vol. 220(C).
    3. Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Xie, Changjun & Huang, Liang & Li, Yang & Xiong, Binyu, 2024. "Innovative design for thermoelectric power generation: Two-stage thermoelectric generator with variable twist ratio twisted tapes optimizing maximum output," Applied Energy, Elsevier, vol. 363(C).
    4. Zhao, Yulong & Zhang, Guoyin & Wen, Lei & Wang, Shixue & Wang, Yulin & Li, Yanzhe & Ge, Minghui, 2024. "Experimental study on thermoelectric characteristics of intermediate fluid thermoelectric generator," Applied Energy, Elsevier, vol. 365(C).
    5. Luo, Ding & Zhang, Haokang & Cao, Jin & Yan, Yuyin & Cao, Bingyang, 2024. "Numerical investigation and optimization of a hexagonal thermoelectric generator with diverging fins for exhaust waste heat recovery," Energy, Elsevier, vol. 301(C).
    6. Sourav Bhakta & Balaram Kundu, 2024. "A Review of Thermoelectric Generators in Automobile Waste Heat Recovery Systems for Improving Energy Utilization," Energies, MDPI, vol. 17(5), pages 1-49, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Li, Yang & Zhang, Rui & Huang, Liang & Xie, Changjun & Shi, Ying, 2024. "Taguchi optimization and thermoelectrical analysis of a pin fin annular thermoelectric generator for automotive waste heat recovery," Renewable Energy, Elsevier, vol. 220(C).
    2. Zhao, Yulong & Lu, Mingjie & Li, Yanzhe & Wang, Yulin & Ge, Minghui, 2023. "Numerical investigation of an exhaust thermoelectric generator with a perforated plate," Energy, Elsevier, vol. 263(PB).
    3. Wenlong Yang & Wenchao Zhu & Yang Yang & Liang Huang & Ying Shi & Changjun Xie, 2022. "Thermoelectric Performance Evaluation and Optimization in a Concentric Annular Thermoelectric Generator under Different Cooling Methods," Energies, MDPI, vol. 15(6), pages 1-21, March.
    4. Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Xie, Changjun & Huang, Liang & Li, Yang & Xiong, Binyu, 2024. "Innovative design for thermoelectric power generation: Two-stage thermoelectric generator with variable twist ratio twisted tapes optimizing maximum output," Applied Energy, Elsevier, vol. 363(C).
    5. Sourav Bhakta & Balaram Kundu, 2024. "A Review of Thermoelectric Generators in Automobile Waste Heat Recovery Systems for Improving Energy Utilization," Energies, MDPI, vol. 17(5), pages 1-49, February.
    6. Luo, Ding & Zhang, Haokang & Cao, Jin & Yan, Yuyin & Cao, Bingyang, 2024. "Numerical investigation and optimization of a hexagonal thermoelectric generator with diverging fins for exhaust waste heat recovery," Energy, Elsevier, vol. 301(C).
    7. Luo, Ding & Wang, Ruochen & Yan, Yuying & Yu, Wei & Zhou, Weiqi, 2021. "Transient numerical modelling of a thermoelectric generator system used for automotive exhaust waste heat recovery," Applied Energy, Elsevier, vol. 297(C).
    8. Zhu, WenChao & Yang, Wenlong & Yang, Yang & Li, Yang & Li, Hao & Shi, Ying & Yan, Yonggao & Xie, Changjun, 2022. "Economic configuration optimization of onboard annual thermoelectric generators under multiple operating conditions," Renewable Energy, Elsevier, vol. 197(C), pages 486-499.
    9. Li, Yanzhe & Wang, Shixue & Zhao, Yulong & Yue, Like, 2022. "Effect of thermoelectric modules with different characteristics on the performance of thermoelectric generators inserted in the central flow region with porous foam copper," Applied Energy, Elsevier, vol. 327(C).
    10. Huang, Bin & Shen, Zu-Guo, 2022. "Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery," Energy, Elsevier, vol. 246(C).
    11. Huang, Xiao-Yan & Zhou, Ze-Yu & Shu, Zheng-Yu & Cai, Yang & Lv, You & Wang, Wei-Wei & Zhao, Fu-Yun, 2024. "A phase change material based annular thermoelectric energy harvester from ambient temperature fluctuations: Transient modeling and critical characteristics," Renewable Energy, Elsevier, vol. 222(C).
    12. Luo, Ding & Yan, Yuying & Li, Ying & Yang, Xuelin & Chen, Hao, 2023. "Exhaust channel optimization of the automobile thermoelectric generator to produce the highest net power," Energy, Elsevier, vol. 281(C).
    13. Ge, Minghui & Li, Zhenhua & Zhao, Yuntong & Xuan, Zhiwei & Li, Yanzhe & Zhao, Yulong, 2022. "Experimental study of thermoelectric generator with different numbers of modules for waste heat recovery," Applied Energy, Elsevier, vol. 322(C).
    14. Luo, Ding & Wang, Ruochen & Yan, Yuying & Sun, Zeyu & Zhou, Weiqi & Ding, Renkai, 2021. "Comparison of different fluid-thermal-electric multiphysics modeling approaches for thermoelectric generator systems," Renewable Energy, Elsevier, vol. 180(C), pages 1266-1277.
    15. Junpeng Liu & Yajing Sun & Gang Chen & Pengcheng Zhai, 2023. "Performance Analysis of Variable Cross-Section TEGs under Constant Heat Flux Conditions," Energies, MDPI, vol. 16(11), pages 1-16, June.
    16. He, Min & Wang, Enhua & Zhang, Yuanyin & Zhang, Wen & Zhang, Fujun & Zhao, Changlu, 2020. "Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine," Applied Energy, Elsevier, vol. 274(C).
    17. Zhao, Yulong & Lu, Mingjie & Li, Yanzhe & Ge, Minghui & Xie, Liyao & Liu, Liansheng, 2021. "Characteristics analysis of an exhaust thermoelectric generator system with heat transfer fluid circulation," Applied Energy, Elsevier, vol. 304(C).
    18. Hong, Bing-Hua & Huang, Xiao-Yan & He, Jian-Wei & Cai, Yang & Wang, Wei-Wei & Zhao, Fu-Yun, 2023. "Round-the-clock performance of solar thermoelectric wall with phase change material in subtropical climate: Critical analysis and parametric investigations," Energy, Elsevier, vol. 272(C).
    19. Luo, Ding & Yan, Yuying & Li, Ying & Wang, Ruochen & Cheng, Shan & Yang, Xuelin & Ji, Dongxu, 2023. "A hybrid transient CFD-thermoelectric numerical model for automobile thermoelectric generator systems," Applied Energy, Elsevier, vol. 332(C).
    20. Ezzitouni, S. & Fernández-Yáñez, P. & Sánchez, L. & Armas, O., 2020. "Global energy balance in a diesel engine with a thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.