Machine learning-based optimization of segmented thermoelectric power generators using temperature-dependent performance properties
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.122216
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhu, Lei & Li, Huaqi & Chen, Sen & Tian, Xiaoyan & Kang, Xiaoya & Jiang, Xinbiao & Qiu, Suizheng, 2020. "Optimization analysis of a segmented thermoelectric generator based on genetic algorithm," Renewable Energy, Elsevier, vol. 156(C), pages 710-718.
- Zhonglin Bu & Xinyue Zhang & Yixin Hu & Zhiwei Chen & Siqi Lin & Wen Li & Chong Xiao & Yanzhong Pei, 2022. "A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Zhu, Yuxiao & Newbrook, Daniel W. & Dai, Peng & de Groot, C.H. Kees & Huang, Ruomeng, 2022. "Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator," Applied Energy, Elsevier, vol. 305(C).
- Maduabuchi, Chika, 2022. "Thermo-mechanical optimization of thermoelectric generators using deep learning artificial intelligence algorithms fed with verified finite element simulation data," Applied Energy, Elsevier, vol. 315(C).
- Ravi Anant Kishore & Roop L. Mahajan & Shashank Priya, 2018. "Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator," Energies, MDPI, vol. 11(9), pages 1-17, August.
- Zheng, X.F. & Liu, C.X. & Yan, Y.Y. & Wang, Q., 2014. "A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 486-503.
- Li-Dong Zhao & Shih-Han Lo & Yongsheng Zhang & Hui Sun & Gangjian Tan & Ctirad Uher & C. Wolverton & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2014. "Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals," Nature, Nature, vol. 508(7496), pages 373-377, April.
- Ge, Ya & Liu, Zhichun & Sun, Henan & Liu, Wei, 2018. "Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm," Energy, Elsevier, vol. 147(C), pages 1060-1069.
- Seok Woo Lee & Yuan Yang & Hyun-Wook Lee & Hadi Ghasemi & Daniel Kraemer & Gang Chen & Yi Cui, 2014. "An electrochemical system for efficiently harvesting low-grade heat energy," Nature Communications, Nature, vol. 5(1), pages 1-6, September.
- Meng, Jing-Hui & Zhang, Xin-Xin & Wang, Xiao-Dong, 2014. "Multi-objective and multi-parameter optimization of a thermoelectric generator module," Energy, Elsevier, vol. 71(C), pages 367-376.
- Chika Maduabuchi & Hassan Fagehi & Ibrahim Alatawi & Mohammad Alkhedher, 2022. "Predicting the Optimal Performance of a Concentrated Solar Segmented Variable Leg Thermoelectric Generator Using Neural Networks," Energies, MDPI, vol. 15(16), pages 1-25, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Xie, Changjun & Huang, Liang & Li, Yang & Xiong, Binyu, 2024. "Innovative design for thermoelectric power generation: Two-stage thermoelectric generator with variable twist ratio twisted tapes optimizing maximum output," Applied Energy, Elsevier, vol. 363(C).
- Zhao, Yulong & Zhang, Guoyin & Wen, Lei & Wang, Shixue & Wang, Yulin & Li, Yanzhe & Ge, Minghui, 2024. "Experimental study on thermoelectric characteristics of intermediate fluid thermoelectric generator," Applied Energy, Elsevier, vol. 365(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Maduabuchi, Chika & Eneh, Chibuoke & Alrobaian, Abdulrahman Abdullah & Alkhedher, Mohammad, 2023. "Deep neural networks for quick and precise geometry optimization of segmented thermoelectric generators," Energy, Elsevier, vol. 263(PC).
- Maduabuchi, Chika, 2022. "Thermo-mechanical optimization of thermoelectric generators using deep learning artificial intelligence algorithms fed with verified finite element simulation data," Applied Energy, Elsevier, vol. 315(C).
- Chika Maduabuchi & Hassan Fagehi & Ibrahim Alatawi & Mohammad Alkhedher, 2022. "Predicting the Optimal Performance of a Concentrated Solar Segmented Variable Leg Thermoelectric Generator Using Neural Networks," Energies, MDPI, vol. 15(16), pages 1-25, August.
- Xu, Aoqi & Xie, Changjun & Xie, Liping & Zhu, Wenchao & Xiong, Binyu & Gooi, Hoay Beng, 2024. "Performance prediction and optimization of annular thermoelectric generators based on a comprehensive surrogate model," Energy, Elsevier, vol. 290(C).
- Zhu, Yuxiao & Newbrook, Daniel W. & Dai, Peng & de Groot, C.H. Kees & Huang, Ruomeng, 2022. "Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator," Applied Energy, Elsevier, vol. 305(C).
- Ge, Ya & He, Kui & Xiao, Liehui & Yuan, Wuzhi & Huang, Si-Min, 2022. "Geometric optimization for the thermoelectric generator with variable cross-section legs by coupling finite element method and optimization algorithm," Renewable Energy, Elsevier, vol. 183(C), pages 294-303.
- Daniel Sanin-Villa & Oscar Danilo Montoya & Luis Fernando Grisales-Noreña, 2023. "Material Property Characterization and Parameter Estimation of Thermoelectric Generator by Using a Master–Slave Strategy Based on Metaheuristics Techniques," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
- Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
- Wang, Z.H. & Ma, Y.J. & Tang, G.H. & Zhang, Hu & Ji, F. & Sheng, Q., 2023. "Integration of thermal insulation and thermoelectric conversion embedded with phase change materials," Energy, Elsevier, vol. 278(C).
- Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Ge, Ya & Lin, Yousheng & He, Qing & Wang, Wenhao & Chen, Jiechao & Huang, Si-Min, 2021. "Geometric optimization of segmented thermoelectric generators for waste heat recovery systems using genetic algorithm," Energy, Elsevier, vol. 233(C).
- Ye-Qi Zhang & Jiao Sun & Guang-Xu Wang & Tian-Hu Wang, 2022. "Advantage of a Thermoelectric Generator with Hybridization of Segmented Materials and Irregularly Variable Cross-Section Design," Energies, MDPI, vol. 15(8), pages 1-18, April.
- Sun, Henan & Ge, Ya & Liu, Wei & Liu, Zhichun, 2019. "Geometric optimization of two-stage thermoelectric generator using genetic algorithms and thermodynamic analysis," Energy, Elsevier, vol. 171(C), pages 37-48.
- Ge, Ya & Xiao, Qiyin & Wang, Wenhao & Lin, Yousheng & Huang, Si-Min, 2022. "Design of high-performance photovoltaic-thermoelectric hybrid systems using multi-objective genetic algorithm," Renewable Energy, Elsevier, vol. 200(C), pages 136-145.
- Wei Sun & Pengfei Wen & Sijie Zhu & Pengcheng Zhai, 2024. "Geometrical Optimization of Segmented Thermoelectric Generators (TEGs) Based on Neural Network and Multi-Objective Genetic Algorithm," Energies, MDPI, vol. 17(9), pages 1-13, April.
- Fang, Juan & Dong, Hao & Huo, Hailong & Yi, Xiaoping & Wen, Zhi & Liu, Qibin & Liu, Xunliang, 2023. "Thermodynamic performance of solar full-spectrum electricity generation system integrating photovoltaic cell with thermally-regenerative ammonia battery," Applied Energy, Elsevier, vol. 332(C).
- Sajid, Muhammad & Hassan, Ibrahim & Rahman, Aziz, 2017. "An overview of cooling of thermoelectric devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 15-22.
- Tang, Xin & Li, Guiqiang & Zhao, Xudong, 2021. "Effect of air gap on a novel hybrid photovoltaic/thermal and thermally regenerative electrochemical cycle system," Applied Energy, Elsevier, vol. 293(C).
- Kumar, Prashant & Kishore, Ravi Anant & Maurya, Deepam & Stewart, Colin J. & Mirzaeifar, Reza & Quandt, Eckhard & Priya, Shashank, 2019. "Shape memory alloy engine for high efficiency low-temperature gradient thermal to electrical conversion," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
More about this item
Keywords
Thermoelectric; COMSOL-Multiphysics; Deep neural network; Genetic algorithm active learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923015805. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.