IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics0960148124009881.html
   My bibliography  Save this article

Multi-period optimal capacity expansion planning scheme of regional integrated energy systems considering multi-time scale uncertainty and generation low-carbon retrofit

Author

Listed:
  • Liu, Xinglei
  • Liu, Jun
  • Liu, Jiacheng
  • Yang, Yin

Abstract

With increasingly challenging climate crisis, carbon neutrality has become a necessary path for the whole world. However, there still lacks a comprehensive investigation on the optimal capacity expansion planning for a low-carbon transformation while considering multiple uncertainties. In this paper, a multi-period optimal capacity expansion planning scheme for regional integrated energy systems considering multi-time scale uncertainties and generation low-carbon retrofit is proposed. First, to better describe the short-time scale uncertainty caused by renewable energy and load fluctuations, a multi-dimensional tempo-spatial correlated scenario generation method is proposed to more accurately capture stochastic features with the least amounts of representative scenarios. Second, a multi-period optimal planning model considering generation low-carbon retrofit and short-/long-time scale uncertainties is developed. The proposed model combines information gap decision theory and chance constraints to stress both uncertainties simultaneously, which is further linearized to facilitate the computation. Third, an improved bilinear Benders decomposition (IBBD) method is utilized to efficiently solve the proposed large-scale optimal planning problem. Finally, numerical experiments of a real world test system of WF city show: 1) the maximum errors of PDF and CDF between generated scenarios and historical data are 0.108 and 0.016, validating the effectiveness of the proposed scenario generation method; 2) the low-carbon retrofit reduces system carbon emissions by 14.12 × 107 kg, while the total system cost is $956,411,387 with additional energy coupling units and renewables installed, indicating the reliability of the multi-period planning model; 3) the IBBD algorithm demonstrates applicability and efficiency in solving the proposed multi-period optimal expansion planning problem, reducing computation time by over 80.39 % compared to commercial solvers, such as GUROBI.

Suggested Citation

  • Liu, Xinglei & Liu, Jun & Liu, Jiacheng & Yang, Yin, 2024. "Multi-period optimal capacity expansion planning scheme of regional integrated energy systems considering multi-time scale uncertainty and generation low-carbon retrofit," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009881
    DOI: 10.1016/j.renene.2024.120920
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124009881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.