IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124016112.html
   My bibliography  Save this article

Scenario-based stochastic optimization on the variability of solar and wind for component sizing of integrated energy systems

Author

Listed:
  • Hua, Lin
  • Junjie, Xia
  • Xiang, Gao
  • Lei, Zheng
  • Dengwei, Jing
  • Zhang, Xiongwen
  • Liejin, Guo

Abstract

The inherent intermittency and variability of renewable energy sources present significant challenges to the optimal design and implementation of integrated energy systems (IES). This paper introduces a novel stochastic optimization model that integrates advanced scenario generation and clustering algorithm for renewable energy sources within a multi-objective, bi-level optimization framework. Specifically, the clearness index is employed to represent the stochastic distribution of solar radiation intensity by beta distribution, while wind speed uncertainty is modeled seasonally using the Weibull distribution. Monte Carlo sampling with synchronous back substitution is applied for scenario generation and reduction of solar radiation and wind speed. To address the multi-objective evaluation, the analytic hierarchy process is utilized, and the joint optimization is achieved by combining a region contraction algorithm with stochastic programming. The proposed methodology is validated on an IES featuring various heating devices, incorporating uncertainties in both wind and solar energy. The results indicate that the absorption heat pump-based scheme achieves superior energy-saving performance, achieving an energy rate of 0.4724. Additionally, the compression heat pump-based scheme exhibits excellent economic efficiency and environmental sustainability, with a cost of energy of 0.3639 and a renewable fraction of 0.5536.

Suggested Citation

  • Hua, Lin & Junjie, Xia & Xiang, Gao & Lei, Zheng & Dengwei, Jing & Zhang, Xiongwen & Liejin, Guo, 2024. "Scenario-based stochastic optimization on the variability of solar and wind for component sizing of integrated energy systems," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016112
    DOI: 10.1016/j.renene.2024.121543
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124016112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121543?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.