IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics0360544222032911.html
   My bibliography  Save this article

Hybrid robust decentralized optimization of emission-aware multi-energy microgrids considering multiple uncertainties

Author

Listed:
  • Zhou, Kaile
  • Fei, Zhineng
  • Hu, Rong

Abstract

Multi-energy microgrid (MEMG) can effectively coordinate various energy carriers and decarbonize the power system. Several MEMGs in the same distribution network are interconnected to form a multi-microgrid system, where a coordinator exists to coordinate these MEMGs to provide more cost-effective and reliable energy services. However, in this system, protecting each MEMG's information privacy is important. Moreover, the uncertainties caused by supply-demand sides and electricity price challenge the reliable operation of MEMGs. Therefore, this study proposes a hybrid robust decentralized energy management framework for the optimal day-ahead scheduling of interconnected MEMGs. Specifically, a decomposition strategy based on the alternating direction method of multipliers (ADMM) is utilized for privacy protection. The Wasserstein metric based distributionally robust optimization (DRO) and the robust optimization (RO) are incorporated to effectively deal with multiple uncertainties. Experimental results show that the coordination of multiple energy carriers (electricity, heat, hydrogen, and gas) can significantly lower the total cost and carbon emission cost (23.39% and 41.64%, respectively). Total cost can also be decreased by 3.15% with the implementation of integrate demand response (IDR). The used ADMM owns excellent performance, which can coverage to the result of centralized manner within a few iterations. Comparative analysis further demonstrated the predictability and superiority of the proposed hybrid robust optimization (HyRO).

Suggested Citation

  • Zhou, Kaile & Fei, Zhineng & Hu, Rong, 2023. "Hybrid robust decentralized optimization of emission-aware multi-energy microgrids considering multiple uncertainties," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032911
    DOI: 10.1016/j.energy.2022.126405
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222032911
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    2. Zhong, Xiaoqing & Zhong, Weifeng & Liu, Yi & Yang, Chao & Xie, Shengli, 2022. "Optimal energy management for multi-energy multi-microgrid networks considering carbon emission limitations," Energy, Elsevier, vol. 246(C).
    3. Gao, Hongjun & Xu, Song & Liu, Youbo & Wang, Lingfeng & Xiang, Yingmeng & Liu, Junyong, 2020. "Decentralized optimal operation model for cooperative microgrids considering renewable energy uncertainties," Applied Energy, Elsevier, vol. 262(C).
    4. Zhang, Dongdong & Zhu, Hongyu & Zhang, Hongcai & Goh, Hui Hwang & Liu, Hui & Wu, Thomas, 2022. "An optimized design of residential integrated energy system considering the power-to-gas technology with multi-functional characteristics," Energy, Elsevier, vol. 238(PA).
    5. Chen, Weidong & Wang, Junnan & Yu, Guanyi & Chen, Jiajia & Hu, Yumeng, 2022. "Research on day-ahead transactions between multi-microgrid based on cooperative game model," Applied Energy, Elsevier, vol. 316(C).
    6. Hadayeghparast, Shahrzad & SoltaniNejad Farsangi, Alireza & Shayanfar, Heidarali, 2019. "Day-ahead stochastic multi-objective economic/emission operational scheduling of a large scale virtual power plant," Energy, Elsevier, vol. 172(C), pages 630-646.
    7. Rezaei, Navid & Pezhmani, Yasin & Khazali, Amirhossein, 2022. "Economic-environmental risk-averse optimal heat and power energy management of a grid-connected multi microgrid system considering demand response and bidding strategy," Energy, Elsevier, vol. 240(C).
    8. Chen, Tengpeng & Cao, Yuhao & Qing, Xinlin & Zhang, Jingrui & Sun, Yuhao & Amaratunga, Gehan A.J., 2022. "Multi-energy microgrid robust energy management with a novel decision-making strategy," Energy, Elsevier, vol. 239(PA).
    9. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    10. Zhou, Xiaoqian & Ai, Qian & Yousif, Muhammad, 2019. "Two kinds of decentralized robust economic dispatch framework combined distribution network and multi-microgrids," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    12. Liang, Weikun & Lin, Shunjiang & Lei, Shunbo & Xie, Yuquan & Tang, Zhiqiang & Liu, Mingbo, 2022. "Distributionally robust optimal dispatch of CCHP campus microgrids considering the time-delay of pipelines and the uncertainty of renewable energy," Energy, Elsevier, vol. 239(PC).
    13. Shams, Mohammad H. & Shahabi, Majid & MansourLakouraj, Mohammad & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Adjustable robust optimization approach for two-stage operation of energy hub-based microgrids," Energy, Elsevier, vol. 222(C).
    14. Mansouri, S.A. & Ahmarinejad, A. & Nematbakhsh, E. & Javadi, M.S. & Esmaeel Nezhad, A. & Catalão, J.P.S., 2022. "A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources," Energy, Elsevier, vol. 245(C).
    15. Wang, Yuwei & Yang, Yuanjuan & Fei, Haoran & Song, Minghao & Jia, Mengyao, 2022. "Wasserstein and multivariate linear affine based distributionally robust optimization for CCHP-P2G scheduling considering multiple uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    16. Jafari, Mehdi & Botterud, Audun & Sakti, Apurba, 2022. "Decarbonizing power systems: A critical review of the role of energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Arrigo, Adriano & Ordoudis, Christos & Kazempour, Jalal & De Grève, Zacharie & Toubeau, Jean-François & Vallée, François, 2022. "Wasserstein distributionally robust chance-constrained optimization for energy and reserve dispatch: An exact and physically-bounded formulation," European Journal of Operational Research, Elsevier, vol. 296(1), pages 304-322.
    18. Chen, J.J. & Qi, B.X. & Rong, Z.K. & Peng, K. & Zhao, Y.L. & Zhang, X.H., 2021. "Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement," Energy, Elsevier, vol. 217(C).
    19. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    20. Siqin, Zhuoya & Niu, DongXiao & Wang, Xuejie & Zhen, Hao & Li, MingYu & Wang, Jingbo, 2022. "A two-stage distributionally robust optimization model for P2G-CCHP microgrid considering uncertainty and carbon emission," Energy, Elsevier, vol. 260(C).
    21. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Feng, Nanping, 2020. "A robust optimization approach for optimal load dispatch of community energy hub," Applied Energy, Elsevier, vol. 259(C).
    22. Wu, Xiong & Qi, Shixiong & Wang, Zhao & Duan, Chao & Wang, Xiuli & Li, Furong, 2019. "Optimal scheduling for microgrids with hydrogen fueling stations considering uncertainty using data-driven approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    23. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Haifeng & Vinod, Ashwin & Lu, Shuai & Gooi, Hoay Beng & Pan, Guangsheng & Zhang, Suhan & Veerasamy, Veerapandiyan, 2023. "Decentralized mixed-integer optimization for robust integrated electricity and heat scheduling," Applied Energy, Elsevier, vol. 350(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    2. Qiu, Haifeng & Vinod, Ashwin & Lu, Shuai & Gooi, Hoay Beng & Pan, Guangsheng & Zhang, Suhan & Veerasamy, Veerapandiyan, 2023. "Decentralized mixed-integer optimization for robust integrated electricity and heat scheduling," Applied Energy, Elsevier, vol. 350(C).
    3. Chang, Weiguang & Yang, Qiang, 2023. "Low carbon oriented collaborative energy management framework for multi-microgrid aggregated virtual power plant considering electricity trading," Applied Energy, Elsevier, vol. 351(C).
    4. Zhou, Xu & Ma, Zhongjing & Zou, Suli & Zhang, Jinhui, 2022. "Consensus-based distributed economic dispatch for Multi Micro Energy Grid systems under coupled carbon emissions," Applied Energy, Elsevier, vol. 324(C).
    5. Jani, Ali & Jadid, Shahram, 2023. "Two-stage energy scheduling framework for multi-microgrid system in market environment," Applied Energy, Elsevier, vol. 336(C).
    6. Gao, Chong & Lin, Junjie & Zeng, Jianfeng & Han, Fengwu, 2022. "Wind-photovoltaic co-generation prediction and energy scheduling of low-carbon complex regional integrated energy system with hydrogen industry chain based on copula-MILP," Applied Energy, Elsevier, vol. 328(C).
    7. Mohseni, Shayan & Pishvaee, Mir Saman, 2023. "Energy trading and scheduling in networked microgrids using fuzzy bargaining game theory and distributionally robust optimization," Applied Energy, Elsevier, vol. 350(C).
    8. Wang, Y. & Rousis, A. Oulis & Strbac, G., 2022. "Resilience-driven optimal sizing and pre-positioning of mobile energy storage systems in decentralized networked microgrids," Applied Energy, Elsevier, vol. 305(C).
    9. Marcelino, C.G. & Leite, G.M.C. & Wanner, E.F. & Jiménez-Fernández, S. & Salcedo-Sanz, S., 2023. "Evaluating the use of a Net-Metering mechanism in microgrids to reduce power generation costs with a swarm-intelligent algorithm," Energy, Elsevier, vol. 266(C).
    10. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    11. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    12. He, Shuaijia & Gao, Hongjun & Chen, Zhe & Liu, Junyong & Zhao, Liang & Wu, Gang & Xu, Song, 2022. "Low-carbon distribution system planning considering flexible support of zero-carbon energy station," Energy, Elsevier, vol. 244(PB).
    13. Wang, Zhuo & Hou, Hui & Zhao, Bo & Zhang, Leiqi & Shi, Ying & Xie, Changjun, 2024. "Risk-averse stochastic capacity planning and P2P trading collaborative optimization for multi-energy microgrids considering carbon emission limitations: An asymmetric Nash bargaining approach," Applied Energy, Elsevier, vol. 357(C).
    14. Yan, Sizhe & Wang, Weiqing & Li, Xiaozhu & Zhao, Yi, 2022. "Research on a cross-regional robust trading strategy based on multiple market mechanisms," Energy, Elsevier, vol. 261(PB).
    15. Khaligh, Vahid & Ghezelbash, Azam & Mazidi, Mohammadreza & Liu, Jay & Ryu, Jun-Hyung, 2023. "P-robust energy management of a multi-energy microgrid enabled with energy conversions under various uncertainties," Energy, Elsevier, vol. 271(C).
    16. Lu, Xi & Xia, Shiwei & Gu, Wei & Chan, Ka Wing, 2022. "A model for balance responsible distribution systems with energy storage to achieve coordinated load shifting and uncertainty mitigation," Energy, Elsevier, vol. 249(C).
    17. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    18. Rezaei, Navid & Pezhmani, Yasin & Khazali, Amirhossein, 2022. "Economic-environmental risk-averse optimal heat and power energy management of a grid-connected multi microgrid system considering demand response and bidding strategy," Energy, Elsevier, vol. 240(C).
    19. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    20. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.