IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i20p5044-d1496207.html
   My bibliography  Save this article

Multi-Objetive Dispatching in Multi-Area Power Systems Using the Fuzzy Satisficing Method

Author

Listed:
  • Paspuel Cristian

    (Engineering Department, Universidad Politecnica Salesiana, South Campus, Av. Rumichaca and Av. M. Valverde, Quito 170702, Ecuador
    These authors contributed equally to this work.)

  • Luis Tipán

    (Engineering Department, Universidad Politecnica Salesiana, South Campus, Av. Rumichaca and Av. M. Valverde, Quito 170702, Ecuador
    These authors contributed equally to this work.)

Abstract

The traditional mathematical models for solving the economic dispatch problem at the generation level primarily focus on minimizing overall operational costs while ensuring demand is met across various periods. However, contemporary power systems integrate a diverse mix of generators from both conventional and renewable energy sources, contributing to economically efficient energy production and playing a pivotal role in reducing greenhouse gas emissions. As the complexity of power systems increases, the scope of economic dispatch must expand to address demand across multiple regions, incorporating a range of objective functions that optimize energy resource utilization, reduce costs, and achieve superior economic and technical outcomes. This paper, therefore, proposes an advanced optimization model designed to determine the hourly power output of various generation units distributed across multiple areas within the power system. The model satisfies the dual objective functions and adheres to stringent technical constraints, effectively framing the problem as a nonlinear programming challenge. Furthermore, an in-depth analysis of the resulting and exchanged energy quantities demonstrates that the model guarantees the hourly demand. Significantly, the system’s efficiency can be further enhanced by increasing the capacity of the interconnection links between areas, thereby generating additional savings that can be reinvested into expanding the links’ capacity. Moreover, the multi-objective model excels not only in meeting the proposed objective functions but also in optimizing energy exchange across the system. This optimization is applicable to various types of energy, including thermal and renewable sources, even those characterized by uncertainty in their primary resources. The model’s ability to effectively manage such uncertainties underscores its robustness, instilling confidence in its applicability and reliability across diverse energy scenarios. This adaptability makes the model a significant contribution to the field, offering a sophisticated tool for optimizing multi-area power systems in a way that balances economic, technical, and environmental considerations.

Suggested Citation

  • Paspuel Cristian & Luis Tipán, 2024. "Multi-Objetive Dispatching in Multi-Area Power Systems Using the Fuzzy Satisficing Method," Energies, MDPI, vol. 17(20), pages 1-36, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5044-:d:1496207
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/20/5044/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/20/5044/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lombardi, P. & Schwabe, F., 2017. "Sharing economy as a new business model for energy storage systems," Applied Energy, Elsevier, vol. 188(C), pages 485-496.
    2. Lei, Yang & Wang, Dan & Jia, Hongjie & Chen, Jingcheng & Li, Jingru & Song, Yi & Li, Jiaxi, 2020. "Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy," Applied Energy, Elsevier, vol. 276(C).
    3. Wu, Ying & Chen, Xiaoping & Ma, Jiliang & Wu, Ye & Liu, Daoyin & Xie, Weiyi, 2020. "System integration optimization for coal-fired power plant with CO2 capture by Na2CO3 dry sorbents," Energy, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Shan & Yan, Jie & Yan, Yamin & Zhang, Haoran & Zhang, Jing & Liu, Yongqian & Han, Shuang, 2024. "Joint operation of mobile battery, power system, and transportation system for improving the renewable energy penetration rate," Applied Energy, Elsevier, vol. 357(C).
    2. Chen, Yang & Wu, Ye & Liu, Xing & Ma, Jiliang & Liu, Daoyin & Chen, Xiaoping & Liu, Dong, 2024. "Energy, exergy and economic (3E) analysis of a novel integration process based on coal-fired power plant with CO2 capture & storage, CO2 refrigeration, and waste heat recovery," Energy, Elsevier, vol. 299(C).
    3. Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
    4. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    5. Zhuoxin Lu & Xiaoyuan Xu & Zheng Yan & Dong Han & Shiwei Xia, 2024. "Mobile Energy-Storage Technology in Power Grid: A Review of Models and Applications," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    6. Zhaonian Ye & Yongzhen Wang & Kai Han & Changlu Zhao & Juntao Han & Yilin Zhu, 2023. "Bi-Objective Optimization and Emergy Analysis of Multi-Distributed Energy System Considering Shared Energy Storage," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    7. Liu, Liuchen & Cui, Guomin & Chen, Jiaxing & Huang, Xiaohuang & Li, Di, 2022. "Two-stage superstructure model for optimization of distributed energy systems (DES) part I: Model development and verification," Energy, Elsevier, vol. 245(C).
    8. Christoph Wenge & Robert Pietracho & Stephan Balischewski & Bartlomiej Arendarski & Pio Lombardi & Przemyslaw Komarnicki & Leszek Kasprzyk, 2020. "Multi Usage Applications of Li-Ion Battery Storage in a Large Photovoltaic Plant: A Practical Experience," Energies, MDPI, vol. 13(18), pages 1-18, September.
    9. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    10. Pu, Yuchen & Li, Qi & Zou, Xueli & Li, Ruirui & Li, Luoyi & Chen, Weirong & Liu, Hong, 2021. "Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage," Applied Energy, Elsevier, vol. 302(C).
    11. Henni, Sarah & Staudt, Philipp & Weinhardt, Christof, 2021. "A sharing economy for residential communities with PV-coupled battery storage: Benefits, pricing and participant matching," Applied Energy, Elsevier, vol. 301(C).
    12. Zeng, Xingyan & Zhu, Lin & Huang, Yue & Lv, Liping & Zhang, Chaoli & Hao, Qiang & Fan, Junming, 2024. "Combined pinch and exergy analysis for post-combustion carbon capture NGCC integrated with absorption heat transformer and flash evaporator," Energy, Elsevier, vol. 288(C).
    13. Zhang, Shixu & Li, Yaowang & Du, Ershun & Fan, Chuan & Wu, Zhenlong & Yao, Yong & Liu, Lurao & Zhang, Ning, 2023. "A review and outlook on cloud energy storage: An aggregated and shared utilizing method of energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    14. Zhang, Wen-Yi & Zheng, Boshen & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2022. "Peer-to-peer transactive mechanism for residential shared energy storage," Energy, Elsevier, vol. 246(C).
    15. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    16. Frederik Plewnia, 2019. "The Energy System and the Sharing Economy: Interfaces and Overlaps and What to Learn from Them," Energies, MDPI, vol. 12(3), pages 1-17, January.
    17. Baskoro, Firly Rachmaditya & Takahashi, Katsuhiko & Morikawa, Katsumi & Nagasawa, Keisuke, 2022. "Multi-objective optimization on total cost and carbon dioxide emission of coal supply for coal-fired power plants in Indonesia," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    18. Kang, Hyuna & Jung, Seunghoon & Kim, Hakpyeong & Hong, Juwon & Jeoung, Jaewon & Hong, Taehoon, 2023. "Multi-objective sizing and real-time scheduling of battery energy storage in energy-sharing community based on reinforcement learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    19. Lopez, A. & Ogayar, B. & Hernández, J.C. & Sutil, F.S., 2020. "Survey and assessment of technical and economic features for the provision of frequency control services by household-prosumers," Energy Policy, Elsevier, vol. 146(C).
    20. Wu, Min & Xu, Jiazhu & Zeng, Linjun & Li, Chang & Liu, Yuxing & Yi, Yuqin & Wen, Ming & Jiang, Zhuohan, 2022. "Two-stage robust optimization model for park integrated energy system based on dynamic programming," Applied Energy, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5044-:d:1496207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.