IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v230y2024ics0960148124008759.html
   My bibliography  Save this article

Investigation on the hydrogen production by methanol aqueous phase reforming over Pt/CexMg1-xO2 catalyst: Synergistic effect of support basicity and oxygen vacancies

Author

Listed:
  • Tian, Zhipeng
  • Lu, Yongheng
  • Zhang, Weijie
  • Shu, Riyang
  • Luo, Xianglong
  • Song, Qingbin
  • Lei, Libin
  • Wang, Chao
  • Chen, Ying
  • Ma, Longlong

Abstract

Green hydrogen production from biomass oxygenated derivatives (methanol, ethanol, ethylene glycol, etc.) by low temperature aqueous phase reforming (APR) has the advantages of high hydrogen selectivity and low energy consumption. A series of CexMg1-xO2 mixed oxide supported catalysts were synthesized by a simple citric acid combustion method. The results show that these catalysts exhibit excellent water-gas shift reaction activity and CO is rarely detected in the products, which is due to their abundant oxygen vacancies of the mixed oxide supports of the Pt/CexMg1-xO2 catalysts. At the same time, the introduction of MgO provides more strong basic sites on the surface of mixed oxide support, and the methanol conversion and hydrogen yield show a volcano peak with the increasing number of basic sites and the hydrogen production reaches the highest (127.16 mmol) over Pt/Ce0·5Mg0·5O2 catalyst. The mixed oxide supported Pt/Ce0·5Mg0·5O2 catalyst enjoys the benefits of both oxygen vacancies in accelerating H2O adsorption/dissociation and strong basic sites in contributing to the formation of formate group (HCOO*), which improve the oxidation of CO* and APR activity. This synergistic effect is conducive to improve hydrogen yield of methanol APR and reduce CO selectivity to a minimum level.

Suggested Citation

  • Tian, Zhipeng & Lu, Yongheng & Zhang, Weijie & Shu, Riyang & Luo, Xianglong & Song, Qingbin & Lei, Libin & Wang, Chao & Chen, Ying & Ma, Longlong, 2024. "Investigation on the hydrogen production by methanol aqueous phase reforming over Pt/CexMg1-xO2 catalyst: Synergistic effect of support basicity and oxygen vacancies," Renewable Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124008759
    DOI: 10.1016/j.renene.2024.120807
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124008759
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124008759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.