IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v97y2016icp373-379.html
   My bibliography  Save this article

Crude bio-glycerol aqueous phase reforming and hydrogenolysis over commercial SiO2Al2O3 nickel catalyst

Author

Listed:
  • Seretis, Antonios
  • Tsiakaras, Panagiotis

Abstract

In the present work, an one-pot Aqueous Phase Reforming (APR) and Aqueous Phase Hydrogenolysis (APH) of crude glycerol in a batch reactor containing commercial SiO2Al2O3 supported 65%Ni catalyst is performed. The effect of: i) the glycerol’s impurities, ii) the operating temperature (200–240 °C) and iii) the crude glycerol concentration (10–40 wt%) is investigated.

Suggested Citation

  • Seretis, Antonios & Tsiakaras, Panagiotis, 2016. "Crude bio-glycerol aqueous phase reforming and hydrogenolysis over commercial SiO2Al2O3 nickel catalyst," Renewable Energy, Elsevier, vol. 97(C), pages 373-379.
  • Handle: RePEc:eee:renene:v:97:y:2016:i:c:p:373-379
    DOI: 10.1016/j.renene.2016.05.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116304955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. D. Cortright & R. R. Davda & J. A. Dumesic, 2002. "Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water," Nature, Nature, vol. 418(6901), pages 964-967, August.
    2. Tuza, Pablo V. & Manfro, Robinson L. & Ribeiro, Nielson F.P. & Souza, Mariana M.V.M., 2013. "Production of renewable hydrogen by aqueous-phase reforming of glycerol over Ni–Cu catalysts derived from hydrotalcite precursors," Renewable Energy, Elsevier, vol. 50(C), pages 408-414.
    3. Milazzo, M.F. & Spina, F. & Cavallaro, S. & Bart, J.C.J., 2013. "Sustainable soy biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 806-852.
    4. Seretis, A. & Tsiakaras, P., 2016. "Aqueous phase reforming (APR) of glycerol over platinum supported on Al2O3 catalyst," Renewable Energy, Elsevier, vol. 85(C), pages 1116-1126.
    5. Quispe, César A.G. & Coronado, Christian J.R. & Carvalho Jr., João A., 2013. "Glycerol: Production, consumption, prices, characterization and new trends in combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 475-493.
    6. Menezes, André O. & Rodrigues, Michelly T. & Zimmaro, Adriana & Borges, Luiz E.P. & Fraga, Marco A., 2011. "Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides," Renewable Energy, Elsevier, vol. 36(2), pages 595-599.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Dashuai & Dou, Binlin & Zhang, Hua & Zhao, Longfei & Wu, Kai & Zeng, Pingchao & Chen, Haisheng & Xu, Yujie, 2022. "Comparison of gelatinous and calcined magnesia supported Ni or/and Co-based catalysts for aqueous phase reforming of glycerol," Renewable Energy, Elsevier, vol. 186(C), pages 656-666.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seretis, A. & Tsiakaras, P., 2016. "Aqueous phase reforming (APR) of glycerol over platinum supported on Al2O3 catalyst," Renewable Energy, Elsevier, vol. 85(C), pages 1116-1126.
    2. Quispe, César A.G. & Coronado, Christian J.R. & Carvalho Jr., João A., 2013. "Glycerol: Production, consumption, prices, characterization and new trends in combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 475-493.
    3. Bastan, Farzad & Kazemeini, Mohammad & Larimi, Afsaneh Sadat, 2017. "Aqueous-phase reforming of glycerol for production of alkanes over Ni/CexZr1-xO2 nano-catalyst: Effects of the support’s composition," Renewable Energy, Elsevier, vol. 108(C), pages 417-424.
    4. Justicia, Jéssica & Alberto Baeza, José & de Oliveira, Adriana S. & Calvo, Luisa & Heras, Francisco & Gilarranz, Miguel A., 2022. "Aqueous-phase reforming of water-soluble compounds from pyrolysis bio-oils," Renewable Energy, Elsevier, vol. 199(C), pages 895-907.
    5. Guo, Yong & Azmat, Muhammad Usman & Liu, Xiaohui & Wang, Yanqin & Lu, Guanzhong, 2012. "Effect of support’s basic properties on hydrogen production in aqueous-phase reforming of glycerol and correlation between WGS and APR," Applied Energy, Elsevier, vol. 92(C), pages 218-223.
    6. Liu, Dashuai & Dou, Binlin & Zhang, Hua & Zhao, Longfei & Wu, Kai & Zeng, Pingchao & Chen, Haisheng & Xu, Yujie, 2022. "Comparison of gelatinous and calcined magnesia supported Ni or/and Co-based catalysts for aqueous phase reforming of glycerol," Renewable Energy, Elsevier, vol. 186(C), pages 656-666.
    7. Hajjaji, Noureddine & Baccar, Ines & Pons, Marie-Noëlle, 2014. "Energy and exergy analysis as tools for optimization of hydrogen production by glycerol autothermal reforming," Renewable Energy, Elsevier, vol. 71(C), pages 368-380.
    8. Schwengber, Carine Aline & Alves, Helton José & Schaffner, Rodolfo Andrade & da Silva, Fernando Alves & Sequinel, Rodrigo & Bach, Vanessa Rossato & Ferracin, Ricardo José, 2016. "Overview of glycerol reforming for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 259-266.
    9. Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
    10. Yevheniia Ziabina & Tetyana Pimonenko, 2020. "The Green Deal Policy for Renewable Energy: A Bibliometric Analysis," Virtual Economics, The London Academy of Science and Business, vol. 3(4), pages 147-168, October.
    11. Jin, Gong & Iwaki, Hiroyuki & Arai, Norio & Kitagawa, Kuniyuki, 2005. "Study on the gasification of wastepaper/carbon dioxide catalyzed by molten carbonate salts," Energy, Elsevier, vol. 30(7), pages 1192-1203.
    12. Bruno, Arthur M. & Chagas, Carlos Alberto & Souza, Mariana M.V.M. & Manfro, Robinson L., 2018. "Lactic acid production from glycerol in alkaline medium using Pt-based catalysts in continuous flow reaction system," Renewable Energy, Elsevier, vol. 118(C), pages 160-171.
    13. Kim, Min-Cheol & Kim, Tae-Wan & Kim, Hyung Ju & Kim, Chul-Ung & Bae, Jong Wook, 2016. "Aqueous phase reforming of polyols for hydrogen production using supported PtFe bimetallic catalysts," Renewable Energy, Elsevier, vol. 95(C), pages 396-403.
    14. Feng, Junfeng & Yang, Zhongzhi & Hse, Chung-yun & Su, Qiuli & Wang, Kui & Jiang, Jianchun & Xu, Junming, 2017. "In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading," Renewable Energy, Elsevier, vol. 105(C), pages 140-148.
    15. Kivevele, Thomas & Kichonge, Baraka, 2024. "Techno-economic evaluation of transesterification processes for biodiesel production from low quality non-edible feedstocks: Process design and simulation," Energy, Elsevier, vol. 297(C).
    16. Meryemoğlu, Bahar & Hasanoğlu, Arif & Kaya, Burçak & Irmak, Sibel & Erbatur, Oktay, 2014. "Hydrogen production from aqueous-phase reforming of sorghum biomass: An application of the response surface methodology," Renewable Energy, Elsevier, vol. 62(C), pages 535-541.
    17. Saba, N. & Jawaid, M. & Hakeem, K.R. & Paridah, M.T. & Khalina, A. & Alothman, O.Y., 2015. "Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 446-459.
    18. Francesco Asdrubali & Franco Cotana & Federico Rossi & Andrea Presciutti & Antonella Rotili & Claudia Guattari, 2015. "Life Cycle Assessment of New Oxy-Fuels from Biodiesel-Derived Glycerol," Energies, MDPI, vol. 8(3), pages 1-16, February.
    19. Aubaid Ullah & Nur Awanis Hashim & Mohamad Fairus Rabuni & Mohd Usman Mohd Junaidi, 2023. "A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency," Energies, MDPI, vol. 16(3), pages 1-35, February.
    20. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:97:y:2016:i:c:p:373-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.