IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp893-901.html
   My bibliography  Save this article

Microwave assisted steam reforming in a high efficiency catalytic reactor

Author

Listed:
  • Meloni, Eugenio
  • Martino, Marco
  • Palma, Vincenzo

Abstract

The current H2 production in the EU (>27 kt/d) is almost entirely from natural gas via Methane Steam Reforming (MSR), a strongly endothermic catalytic process, carried out in packed-bed tubular reformers at 750–900 °C, with considerable CO2 emissions. In this context, the application of renewable electricity to MSR offers interesting perspectives for a reduced environmental footprint. The use of microwaves (MW) may result in efficient and faster method for generating the heat directly inside the catalytic volume. In this work, the role of the reactor configuration in the MW-assisted MSR has been investigated, by performing dedicated experimental tests in which a Ni-based catalyst (7 wt% with respect to the washcoat), prepared starting by silicon carbide monoliths, was tested in two different reactors. The results showed that the CH4 conversion showed a good approach to the thermodynamic equilibrium values starting at about 750 °C at a value of gas hourly space velocity (GHSV) of 5000 h−1 in the tests performed with the optimized reactor configuration. The energy efficiency of the two systems was about 50% and 73%, for the classical and optimized configuration respectively, and the latter had an energy consumption of 2.5 kWh/Nm3H2 at 750 °C.

Suggested Citation

  • Meloni, Eugenio & Martino, Marco & Palma, Vincenzo, 2022. "Microwave assisted steam reforming in a high efficiency catalytic reactor," Renewable Energy, Elsevier, vol. 197(C), pages 893-901.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:893-901
    DOI: 10.1016/j.renene.2022.07.157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122011594
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Khaled, D. & Novas, N. & Gazquez, J.A. & Manzano-Agugliaro, F., 2018. "Microwave dielectric heating: Applications on metals processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2880-2892.
    2. Chen, Chao & Lu, Yangsiyu & Banares-Alcantara, Rene, 2019. "Direct and indirect electrification of chemical industry using methanol production as a case study," Applied Energy, Elsevier, vol. 243(C), pages 71-90.
    3. Li, Longzhi & Yang, Zhijuan & Qin, Xiaomin & Chen, Jian & Yan, Keshuo & Zou, Guifu & Peng, Zhuoyan & Wang, Fumao & Song, Zhanlong & Ma, Chunyuan, 2019. "Toluene microwave-assisted reforming with CO2 or a mixed agent of CO2-H2O on Fe-doped activated biochar," Energy, Elsevier, vol. 177(C), pages 358-366.
    4. Yue, Meiling & Lambert, Hugo & Pahon, Elodie & Roche, Robin & Jemei, Samir & Hissel, Daniel, 2021. "Hydrogen energy systems: A critical review of technologies, applications, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    5. Asomaning, Justice & Haupt, Susan & Chae, Michael & Bressler, David C., 2018. "Recent developments in microwave-assisted thermal conversion of biomass for fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 642-657.
    6. Eugenio Meloni & Marco Martino & Giuseppina Iervolino & Concetta Ruocco & Simona Renda & Giovanni Festa & Vincenzo Palma, 2022. "The Route from Green H 2 Production through Bioethanol Reforming to CO 2 Catalytic Conversion: A Review," Energies, MDPI, vol. 15(7), pages 1-36, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shir Reen Chia & Saifuddin Nomanbhay & Jassinnee Milano & Kit Wayne Chew & Chung-Hong Tan & Kuan Shiong Khoo, 2022. "Microwave-Absorbing Catalysts in Catalytic Reactions of Biofuel Production," Energies, MDPI, vol. 15(21), pages 1-26, October.
    2. Meloni, Eugenio & Saraceno, Emilia & Martino, Marco & Corrado, Antonio & Iervolino, Giuseppina & Palma, Vincenzo, 2023. "SiC-based structured catalysts for a high-efficiency electrified dry reforming of methane," Renewable Energy, Elsevier, vol. 211(C), pages 336-346.
    3. Iulianelli, Adolfo & Brunetti, Adele & Pino, Lidia & Italiano, Cristina & Ferrante, Giovanni Drago & Gensini, Mario & Vita, Antonio, 2023. "An integrated two stages inorganic membrane-based system to generate and recover decarbonized H2: An experimental study and performance indexes analysis," Renewable Energy, Elsevier, vol. 210(C), pages 472-485.
    4. Labanca, A.R.C. & Cunha, A.G. & Ribeiro, R.P. & Zucolotto, C.G. & Cevolani, M.B. & Schettino, M.A., 2022. "Technological solution for distributing vehicular hydrogen using dry plasma reforming of natural gas and biogas," Renewable Energy, Elsevier, vol. 201(P2), pages 11-21.
    5. Eugenio Meloni & Liberato Cafiero & Marco Martino & Vincenzo Palma, 2023. "Structured Catalysts for Non-Thermal Plasma-Assisted Ammonia Synthesis," Energies, MDPI, vol. 16(7), pages 1-17, April.
    6. Hanmin Yang & Ilman Nuran Zaini & Ruming Pan & Yanghao Jin & Yazhe Wang & Lengwan Li & José Juan Bolívar Caballero & Ziyi Shi & Yaprak Subasi & Anissa Nurdiawati & Shule Wang & Yazhou Shen & Tianxiang, 2024. "Distributed electrified heating for efficient hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ocreto, Jherwin B. & Chen, Wei-Hsin & Ubando, Aristotle T. & Park, Young-Kwon & Sharma, Amit Kumar & Ashokkumar, Veeramuthu & Ok, Yong Sik & Kwon, Eilhann E. & Rollon, Analiza P. & De Luna, Mark Danie, 2021. "A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Son, Hyunsoo & Kim, Miae & Kim, Jin-Kuk, 2022. "Sustainable process integration of electrification technologies with industrial energy systems," Energy, Elsevier, vol. 239(PB).
    3. Li, Jian & Tao, Junyu & Yan, Beibei & Jiao, Liguo & Chen, Guanyi & Hu, Jianli, 2021. "Review of microwave-based treatments of biomass gasification tar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    5. Tian, Beile & Mao, Songbo & Guo, Feiqiang & Bai, Jiaming & Shu, Rui & Qian, Lin & Liu, Qi, 2022. "Monolithic biochar-supported cobalt-based catalysts with high-activity and superior-stability for biomass tar reforming," Energy, Elsevier, vol. 242(C).
    6. Richard P. van Leeuwen & Annelies E. Boerman & Edmund W. Schaefer & Gerwin Hoogsteen & Yashar S. Hajimolana, 2022. "Model Supported Business Case Scenario Analysis for Decentral Hydrogen Conversion, Storage and Consumption within Energy Hubs," Energies, MDPI, vol. 15(6), pages 1-22, March.
    7. Vladislav Sadykov, 2023. "Advances in Hydrogen and Syngas Generation," Energies, MDPI, vol. 16(7), pages 1-4, March.
    8. Lidia Gawlik & Eugeniusz Mokrzycki, 2021. "Analysis of the Polish Hydrogen Strategy in the Context of the EU’s Strategic Documents on Hydrogen," Energies, MDPI, vol. 14(19), pages 1-15, October.
    9. Lin, Shunda & Liu, Renlong & Guo, Shenghui, 2022. "High temperature microwave dielectric and thermochemical properties of waste LixMn2O4 battery cathode materials reduced by moso bamboo," Renewable Energy, Elsevier, vol. 181(C), pages 714-724.
    10. Song, Hongqing & Lao, Junming & Zhang, Liyuan & Xie, Chiyu & Wang, Yuhe, 2023. "Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency," Applied Energy, Elsevier, vol. 337(C).
    11. Song, Hee Gaen & Chun, Young Nam, 2020. "Tar decomposition-reforming conversion on microwave-heating carbon receptor," Energy, Elsevier, vol. 199(C).
    12. Ye, Yang & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "The storage performance of metal hydride hydrogen storage tanks with reaction heat recovery by phase change materials," Applied Energy, Elsevier, vol. 299(C).
    13. Svitnič, Tibor & Sundmacher, Kai, 2022. "Renewable methanol production: Optimization-based design, scheduling and waste-heat utilization with the FluxMax approach," Applied Energy, Elsevier, vol. 326(C).
    14. Lincoln, Benjamin James & Kong, Lana & Pineda, Alyssa Mae & Walmsley, Timothy Gordon, 2022. "Process integration and electrification for efficient milk evaporation systems," Energy, Elsevier, vol. 258(C).
    15. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    16. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    17. Sara Lumbreras & Jesús David Gómez & Erik Francisco Alvarez & Sebastien Huclin, 2022. "The Human Factor in Transmission Network Expansion Planning: The Grid That a Sustainable Energy System Needs," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    18. Foong, Shin Ying & Liew, Rock Keey & Yek, Peter Nai Yuh & Han, Chai Sean & Phang, Xue Yee & Chen, Xiangmeng & Chong, William Woei Fong & Verma, Meenakshi & Lam, Su Shiung, 2023. "Microwave heating combined with activated carbon reaction bed: An energy-saving approach to convert seawater into freshwater," Energy, Elsevier, vol. 272(C).
    19. Peipei, Wang & Eyvazov, Elchin & Giyasova, Zeynab & Kazimova, Asli, 2023. "The nexus between natural resource rents and financial wealth on economic recovery: Evidence from European Union economies," Resources Policy, Elsevier, vol. 82(C).
    20. Bhandari, Ramchandra, 2022. "Green hydrogen production potential in West Africa – Case of Niger," Renewable Energy, Elsevier, vol. 196(C), pages 800-811.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:893-901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.