IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i18p11155-d907655.html
   My bibliography  Save this article

Applications of Single Atom Catalysts for Environmental Management

Author

Listed:
  • Rongkui Su

    (College of Environmental Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
    Power China Zhongnan Engineering Corporation Limited, Changsha 410004, China)

  • Hongguo Zhang

    (School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China)

  • Feng Chen

    (School of Environmental and Biological Engineering, Henan University of Engineering, Zhengzhou 451191, China)

  • Zhenxing Wang

    (South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou 510655, China)

  • Lei Huang

    (School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China)

Abstract

With the rapid development of industrialization, human beings have caused many negative effects on the environment that have endangered the survival and development of human beings, such as the greenhouse effect, water pollution, energy depletion, etc [...]

Suggested Citation

  • Rongkui Su & Hongguo Zhang & Feng Chen & Zhenxing Wang & Lei Huang, 2022. "Applications of Single Atom Catalysts for Environmental Management," IJERPH, MDPI, vol. 19(18), pages 1-6, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11155-:d:907655
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/18/11155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/18/11155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lili Lin & Wu Zhou & Rui Gao & Siyu Yao & Xiao Zhang & Wenqian Xu & Shijian Zheng & Zheng Jiang & Qiaolin Yu & Yong-Wang Li & Chuan Shi & Xiao-Dong Wen & Ding Ma, 2017. "Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts," Nature, Nature, vol. 544(7648), pages 80-83, April.
    2. Rongkui Su & Qiqi Ou & Hanqing Wang & Yiting Luo & Xiangrong Dai & Yangyang Wang & Yonghua Chen & Lei Shi, 2022. "Comparison of Phytoremediation Potential of Nerium indicum with Inorganic Modifier Calcium Carbonate and Organic Modifier Mushroom Residue to Lead–Zinc Tailings," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    3. Yang Hou & Ming Qiu & Min Gyu Kim & Pan Liu & Gyutae Nam & Tao Zhang & Xiaodong Zhuang & Bin Yang & Jaephil Cho & Mingwei Chen & Chris Yuan & Lecheng Lei & Xinliang Feng, 2019. "Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vinson Liao & Maximilian Cohen & Yifan Wang & Dionisios G. Vlachos, 2023. "Deducing subnanometer cluster size and shape distributions of heterogeneous supported catalysts," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Rongkui Su & Xiangrong Dai & Hanqing Wang & Zhixiang Wang & Zishi Li & Yonghua Chen & Yiting Luo & Danxia Ouyang, 2022. "Metronidazole Degradation by UV and UV/H 2 O 2 Advanced Oxidation Processes: Kinetics, Mechanisms, and Effects of Natural Water Matrices," IJERPH, MDPI, vol. 19(19), pages 1-19, September.
    3. Qianrong Jiang & Honglei Chen & Zeding Fu & Xiaohua Fu & Jiacheng Wang & Yingqi Liang & Hailong Yin & Junbo Yang & Jie Jiang & Xinxin Yang & He Wang & Zhiming Liu & Rongkui Su, 2022. "Current Progress, Challenges and Perspectives in the Microalgal-Bacterial Aerobic Granular Sludge Process: A Review," IJERPH, MDPI, vol. 19(21), pages 1-19, October.
    4. Rongkui Su & Yangyang Wang & Shunhong Huang & Runhua Chen & Jun Wang, 2022. "Application for Ecological Restoration of Contaminated Soil: Phytoremediation," IJERPH, MDPI, vol. 19(20), pages 1-6, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sethu Sundar Pethaiah & Kishor Kumar Sadasivuni & Arunkumar Jayakumar & Deepalekshmi Ponnamma & Chandra Sekhar Tiwary & Gangadharan Sasikumar, 2020. "Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review," Energies, MDPI, vol. 13(22), pages 1-17, November.
    2. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    3. Guokang Han & Xue Zhang & Wei Liu & Qinghua Zhang & Zhiqiang Wang & Jun Cheng & Tao Yao & Lin Gu & Chunyu Du & Yunzhi Gao & Geping Yin, 2021. "Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Lin Chen & Chang Yu & Xuedan Song & Junting Dong & Jiawei Mu & Jieshan Qiu, 2024. "Integrated electrochemical and chemical system for ampere-level production of terephthalic acid alternatives and hydrogen," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Suxin Zhang & Cheng Hu & Jiemin Cheng, 2022. "A Comprehensive Evaluation System for the Stabilization Effect of Heavy Metal-Contaminated Soil Based on Analytic Hierarchy Process," IJERPH, MDPI, vol. 19(22), pages 1-18, November.
    6. Evgeniy Yurevich Titov & Ivan Vasilevich Bodrikov & Anton Igorevich Serov & Yuriy Alekseevich Kurskii & Dmitry Yurievich Titov & Evgenia Ruslanovna Bodrikova, 2022. "Liquid-Phase Non-Thermal Plasma Discharge for Fuel Oil Processing," Energies, MDPI, vol. 15(9), pages 1-9, May.
    7. Konstantinos Kappis & Joan Papavasiliou & George Avgouropoulos, 2021. "Methanol Reforming Processes for Fuel Cell Applications," Energies, MDPI, vol. 14(24), pages 1-30, December.
    8. Wei Peng & Jiaxin Liu & Xiaoqing Liu & Liqun Wang & Lichang Yin & Haotian Tan & Feng Hou & Ji Liang, 2023. "Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Wang, Yancheng & Liu, Haiyu & Mei, Deqing & Yu, Shizheng, 2022. "Direct ink writing of 3D SiC scaffold as catalyst support for thermally autonomous methanol steam reforming microreactor," Renewable Energy, Elsevier, vol. 187(C), pages 923-932.
    10. Tang, Xincheng & Wu, Yanxiao & Fang, Zhenchang & Dong, Xinyu & Du, Zhongxuan & Deng, Bicai & Sun, Chunhua & Zhou, Feng & Qiao, Xinqi & Li, Xinling, 2024. "Syntheses, catalytic performances and DFT investigations: A recent review of copper-based catalysts of methanol steam reforming for hydrogen production," Energy, Elsevier, vol. 295(C).
    11. Múcio Magno de Melo Farnezi & Enilson de Barros Silva & Lauana Lopes dos Santos & Alexandre Christofaro Silva & Paulo Henrique Grazziotti & Luís Reynaldo Ferracciú Alleoni & Wesley Costa Silva & Angel, 2022. "Potential of Forage Grasses in Phytoremediation of Lead through Production of Phytoliths in Contaminated Soils," Land, MDPI, vol. 12(1), pages 1-10, December.
    12. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Zhao, Xiaotong & Sun, Xiaohang, 2017. "Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations," Applied Energy, Elsevier, vol. 206(C), pages 126-133.
    13. Hao Meng & Yusen Yang & Tianyao Shen & Wei Liu & Lei Wang & Pan Yin & Zhen Ren & Yiming Niu & Bingsen Zhang & Lirong Zheng & Hong Yan & Jian Zhang & Feng-Shou Xiao & Min Wei & Xue Duan, 2023. "A strong bimetal-support interaction in ethanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Hao Meng & Yusen Yang & Tianyao Shen & Zhiming Yin & Lei Wang & Wei Liu & Pan Yin & Zhen Ren & Lirong Zheng & Jian Zhang & Feng-Shou Xiao & Min Wei, 2023. "Designing Cu0−Cu+ dual sites for improved C−H bond fracture towards methanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Xin, Yanbin & Sun, Bing & Liu, Jingyu & Wang, Quanli & Zhu, Xiaomei & Yan, Zhiyu, 2021. "Effects of electrode configurations, solution pH, TiO2 addition on hydrogen production by in-liquid discharge plasma," Renewable Energy, Elsevier, vol. 171(C), pages 728-734.
    16. Jing-Wen Hsueh & Lai-Hsiang Kuo & Po-Han Chen & Wan-Hsin Chen & Chi-Yao Chuang & Chia-Nung Kuo & Chin-Shan Lue & Yu-Ling Lai & Bo-Hong Liu & Chia-Hsin Wang & Yao-Jane Hsu & Chun-Liang Lin & Jyh-Pin Ch, 2024. "Investigating the role of undercoordinated Pt sites at the surface of layered PtTe2 for methanol decomposition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Zhiqiang Zheng & Lu Qi & Xiaoyu Luan & Shuya Zhao & Yurui Xue & Yuliang Li, 2024. "Growing highly ordered Pt and Mn bimetallic single atomic layers over graphdiyne," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Yizhen Lu & Bixuan Li & Na Xu & Zhihua Zhou & Yu Xiao & Yu Jiang & Teng Li & Sheng Hu & Yongji Gong & Yang Cao, 2023. "One-atom-thick hexagonal boron nitride co-catalyst for enhanced oxygen evolution reactions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Jie Xiang & Peiwei Xu & Weizhong Chen & Xiaofeng Wang & Zhijian Chen & Dandan Xu & Yuan Chen & Mingluan Xing & Ping Cheng & Lizhi Wu & Bing Zhu, 2022. "Pollution Characteristics and Health Risk Assessment of Heavy Metals in Agricultural Soils over the Past Five Years in Zhejiang, Southeast China," IJERPH, MDPI, vol. 19(22), pages 1-14, November.
    20. Lei Luo & Lei Fu & Huifen Liu & Youxun Xu & Jialiang Xing & Chun-Ran Chang & Dong-Yuan Yang & Junwang Tang, 2022. "Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11155-:d:907655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.