IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123015744.html
   My bibliography  Save this article

Fish waste oil extraction using supercritical CO2 extraction for biodiesel production: Mathematical, and kinetic modeling

Author

Listed:
  • Shalfoh, Ehsan
  • Ahmad, Mardiana Idayu
  • Binhweel, Fozy
  • Shaah, Marwan Abdulhakim
  • Senusi, Wardah
  • Hossain, Md Sohrab
  • Alsaadi, Sami

Abstract

The safe disposal of organic waste is a big environmental issue in landfills because of its huge generation volume. The main goal of this research is to determine the effect of supercritical carbon dioxide (scCO2) on the extraction of fish waste oil from discarded fish waste for producing biodiesel. Oil from fish waste was extracted using supercritical fluid extraction process using CO2 as a solvent. The supercritical carbon dioxide (scCO2) extraction was carried out with varying extraction pressure (10–40 MPa), temperature (32–80 °C), and treatment time (15–120 min). The maximum fish waste oil yield obtained was about 77.2 % at a temperature of 80 °C, a pressure of 30 MPa and a time of 60 min. The kinetics and thermodynamic behavior of the scCO2 extraction were calculated using Arrhenius law and Eyring theory, respectively. The estimated activation energy Ea value was 24.45 kJ/mol for the scCO2 extraction of discarded fish waste oil. Approximately 87 % of biodiesel was produced from scCO2 extracted oil via alkaline transesterification process with reaction temperature of 65 °C, NaOH loaded 1 wt%, fish oil to methanol molar ratio of 1:9, and treatment time of 3 h. The characterization of the produced biodiesel showed that its properties complied with the biodiesel standards (EN 14214 & ASTM D6751). The finding of this research revealed that the fish waste could be consumed as a biofuel feedstock.

Suggested Citation

  • Shalfoh, Ehsan & Ahmad, Mardiana Idayu & Binhweel, Fozy & Shaah, Marwan Abdulhakim & Senusi, Wardah & Hossain, Md Sohrab & Alsaadi, Sami, 2024. "Fish waste oil extraction using supercritical CO2 extraction for biodiesel production: Mathematical, and kinetic modeling," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015744
    DOI: 10.1016/j.renene.2023.119659
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123015744
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119659?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shivangi Jha & Sonil Nanda & Bishnu Acharya & Ajay K. Dalai, 2022. "A Review of Thermochemical Conversion of Waste Biomass to Biofuels," Energies, MDPI, vol. 15(17), pages 1-23, August.
    2. Abomohra, Abd El-Fatah & Jin, Wenbiao & Tu, Renjie & Han, Song-Fang & Eid, Mohammed & Eladel, Hamed, 2016. "Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 596-606.
    3. Hiroshan Hettiarachchi & Jay N. Meegoda & Sohyeon Ryu, 2018. "Organic Waste Buyback as a Viable Method to Enhance Sustainable Municipal Solid Waste Management in Developing Countries," IJERPH, MDPI, vol. 15(11), pages 1-15, November.
    4. Mohadesi, Majid & Aghel, Babak & Gouran, Ashkan & Razmehgir, Mohammad Hamed, 2022. "Transesterification of waste cooking oil using Clay/CaO as a solid base catalyst," Energy, Elsevier, vol. 242(C).
    5. Cardoso, Luana da Costa & Almeida, Fernanda Naiara Campos de & Souza, Gredson Keiff & Asanome, Isabela Yumi & Pereira, Nehemias Curvelo, 2019. "Synthesis and optimization of ethyl esters from fish oil waste for biodiesel production," Renewable Energy, Elsevier, vol. 133(C), pages 743-748.
    6. Siddharth Jain & Nitin Kumar & Varun Pratap Singh & Sachin Mishra & Naveen Kumar Sharma & Mohit Bajaj & T. M. Yunus Khan, 2023. "Transesterification of Algae Oil and Little Amount of Waste Cooking Oil Blend at Low Temperature in the Presence of NaOH," Energies, MDPI, vol. 16(3), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    2. Abomohra, Abd El-Fatah & Jin, Wenbiao & Sagar, Vikram & Ismail, Gehan A., 2018. "Optimization of chemical flocculation of Scenedesmus obliquus grown on municipal wastewater for improved biodiesel recovery," Renewable Energy, Elsevier, vol. 115(C), pages 880-886.
    3. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Pascoal, C.V.P. & Oliveira, A.L.L. & Figueiredo, D.D. & Assunção, J.C.C., 2020. "Optimization and kinetic study of ultrasonic-mediated in situ transesterification for biodiesel production from the almonds of Syagrus cearensis," Renewable Energy, Elsevier, vol. 147(P1), pages 1815-1824.
    5. Ismaila Rimi Abubakar & Khandoker M. Maniruzzaman & Umar Lawal Dano & Faez S. AlShihri & Maher S. AlShammari & Sayed Mohammed S. Ahmed & Wadee Ahmed Ghanem Al-Gehlani & Tareq I. Alrawaf, 2022. "Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South," IJERPH, MDPI, vol. 19(19), pages 1-26, October.
    6. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Mohamad Yusof Idroas & Thanh Danh Le & Huu Tho Nguyen, 2022. "Experimental Studies of Combustion and Emission Characteristics of Biomass Producer Gas (BPG) in a Constant Volume Combustion Chamber (CVCC) System," Energies, MDPI, vol. 15(21), pages 1-18, October.
    7. El-Sheekh, Mostafa & Abomohra, Abd El-Fatah & Eladel, Hamed & Battah, Mohamed & Mohammed, Soha, 2018. "Screening of different species of Scenedesmus isolated from Egyptian freshwater habitats for biodiesel production," Renewable Energy, Elsevier, vol. 129(PA), pages 114-120.
    8. Pires, José C.M., 2017. "COP21: The algae opportunity?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 867-877.
    9. K. M. Akkoli & S. C. Kamate & S. N. Topannavar & A. R. Bhavimani & N. R. Banapurmath & Ibham Veza & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & A. S. El-Shafay & M. A. Kalam & M. M. Shivashimpi & , 2022. "Influence of Injection Pressure and Aluminium Oxide Nano Particle-Added Fish Oil Methyl Ester on the Performance and Emission of Compression Ignition Engine," Energies, MDPI, vol. 15(24), pages 1-27, December.
    10. Jain, Harshita, 2024. "From pollution to progress: Groundbreaking advances in clean technology unveiled," Innovation and Green Development, Elsevier, vol. 3(2).
    11. Shivangi Jha & Sonil Nanda & Bishnu Acharya & Ajay K. Dalai, 2022. "A Review of Thermochemical Conversion of Waste Biomass to Biofuels," Energies, MDPI, vol. 15(17), pages 1-23, August.
    12. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    13. Sáez-Bastante, J. & Carmona-Cabello, M. & Pinzi, S. & Dorado, M.P., 2020. "Recycling of kebab restoration grease for bioenergy production through acoustic cavitation," Renewable Energy, Elsevier, vol. 155(C), pages 1147-1155.
    14. Ravanipour, Masoumeh & Hamidi, Ali & Mahvi, Amir Hossein, 2021. "Microalgae biodiesel: A systematic review in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Elsayed, Mahdy & Li, Wu & Abdalla, Nashwa S. & Ai, Ping & Zhang, Yanlin & Abomohra, Abd El-Fatah, 2022. "Innovative approach for rapeseed straw recycling using black solider fly larvae: Towards enhanced energy recovery," Renewable Energy, Elsevier, vol. 188(C), pages 211-222.
    16. Hussein El-Sayed Touliabah & Adel W. Almutairi, 2021. "Effect of Phytohormones Supplementation under Nitrogen Depletion on Biomass and Lipid Production of Nannochloropsis oceanica for Integrated Application in Nutrition and Biodiesel," Sustainability, MDPI, vol. 13(2), pages 1-12, January.
    17. Nneka B. Ekwe & Maksim V. Tyufekchiev & Ali A. Salifu & Klaus Schmidt-Rohr & Zhaoxi Zheng & Alex R. Maag & Geoffrey A. Tompsett & Charles M. Cai & Emmanuel O. Onche & Ayten Ates & Winston O. Soboyejo , 2022. "Bamboo as a Cost-Effective Source of Renewable Carbon for Sustainable Economic Development in Low- and Middle-Income Economies," Energies, MDPI, vol. 16(1), pages 1-17, December.
    18. Cao, Bin & Wang, Shuang & Hu, Yamin & Abomohra, Abd El-Fatah & Qian, Lili & He, Zhixia & Wang, Qian & Uzoejinwa, Benjamin Bernard & Esakkimuthu, Sivakumar, 2019. "Effect of washing with diluted acids on Enteromorpha clathrata pyrolysis products: Towards enhanced bio-oil from seaweeds," Renewable Energy, Elsevier, vol. 138(C), pages 29-38.
    19. Elkelawy, Medhat & Etaiw, Safaa El-din H. & Alm-Eldin Bastawissi, Hagar & Ayad, Mohamed I. & Radwan, Ahmed Mohamed & Dawood, Mohamed M., 2021. "Diesel/ biodiesel /silver thiocyanate nanoparticles/hydrogen peroxide blends as new fuel for enhancement of performance, combustion, and Emission characteristics of a diesel engine," Energy, Elsevier, vol. 216(C).
    20. Md Sumon Reza & Juntakan Taweekun & Shammya Afroze & Shohel Ahmed Siddique & Md. Shahinoor Islam & Chongqing Wang & Abul K. Azad, 2023. "Investigation of Thermochemical Properties and Pyrolysis of Barley Waste as a Source for Renewable Energy," Sustainability, MDPI, vol. 15(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.