IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp880-886.html
   My bibliography  Save this article

Optimization of chemical flocculation of Scenedesmus obliquus grown on municipal wastewater for improved biodiesel recovery

Author

Listed:
  • Abomohra, Abd El-Fatah
  • Jin, Wenbiao
  • Sagar, Vikram
  • Ismail, Gehan A.

Abstract

Cost-efficient harvesting of microalgae is a major challenge for large-scale biomass production. The present study aimed to optimize and model the flocculation process for efficient harvest of the biodiesel promising green microalga Scenedesmus obliquus grown in municipal wastewater. In addition, the influence of applied flocculation on biodiesel recovery was measured. Ferric sulphate showed the highest relative flocculation efficiency in comparison with the other tested flocculants. At initial OD680 of 1, the flocculent dose required to achieve 99.5% flocculation efficiency was 150 mg L−1 after 40 min. In addition, relatively higher flocculation efficiencies of S. obliquus cells were observed at lower initial OD680. The suggested polynomial model showed satisfactory and accurate results, with high positive correlation (0.956) between the calculated and measured flocculation efficiency. Furthermore, fatty acid methyl esters (FAMEs) yield of the flocculated biomass showed 40.9% significant increase (P < 0.01) over the centrifuged cells. It can be concluded that flocculation using ferric sulphate is greatly advantageous, as in a single step it served a dual propose of algal biomass harvest and enhanced FAMEs recovery at doses much lower than that used in wastewater treatment plants.

Suggested Citation

  • Abomohra, Abd El-Fatah & Jin, Wenbiao & Sagar, Vikram & Ismail, Gehan A., 2018. "Optimization of chemical flocculation of Scenedesmus obliquus grown on municipal wastewater for improved biodiesel recovery," Renewable Energy, Elsevier, vol. 115(C), pages 880-886.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:880-886
    DOI: 10.1016/j.renene.2017.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117308819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2011. "Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production," Applied Energy, Elsevier, vol. 88(10), pages 3411-3424.
    2. Barros, Ana I. & Gonçalves, Ana L. & Simões, Manuel & Pires, José C.M., 2015. "Harvesting techniques applied to microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1489-1500.
    3. Abomohra, Abd El-Fatah & Jin, Wenbiao & Tu, Renjie & Han, Song-Fang & Eid, Mohammed & Eladel, Hamed, 2016. "Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 596-606.
    4. Laamanen, Corey A. & Ross, Gregory M. & Scott, John A., 2016. "Flotation harvesting of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 75-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Shuangxi & Hu, Tianyi & Xu, Yanzhe & Wang, Jingyi & Chu, Ruoyu & Yin, Zhihong & Mo, Fan & Zhu, Liandong, 2020. "A review on flocculation as an efficient method to harvest energy microalgae: Mechanisms, performances, influencing factors and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Zhou, Xu & Jin, Wenbiao & Wang, Qing & Guo, Shida & Tu, Renjie & Han, Song-fang & Chen, Chuan & Xie, Guojun & Qu, Fanqi & Wang, Qilin, 2020. "Enhancement of productivity of Chlorella pyrenoidosa lipids for biodiesel using co-culture with ammonia-oxidizing bacteria in municipal wastewater," Renewable Energy, Elsevier, vol. 151(C), pages 598-603.
    3. Kamil, Mohammed & Ramadan, Khalid M. & Olabi, Abdul Ghani & Al-Ali, Eman I. & Ma, Xiao & Awad, Omar I., 2020. "Economic, technical, and environmental viability of biodiesel blends derived from coffee waste," Renewable Energy, Elsevier, vol. 147(P1), pages 1880-1894.
    4. Muhammad, Gul & Alam, Md Asraful & Mofijur, M. & Jahirul, M.I. & Lv, Yongkun & Xiong, Wenlong & Ong, Hwai Chyuan & Xu, Jingliang, 2021. "Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Cao, Bin & Wang, Shuang & Hu, Yamin & Abomohra, Abd El-Fatah & Qian, Lili & He, Zhixia & Wang, Qian & Uzoejinwa, Benjamin Bernard & Esakkimuthu, Sivakumar, 2019. "Effect of washing with diluted acids on Enteromorpha clathrata pyrolysis products: Towards enhanced bio-oil from seaweeds," Renewable Energy, Elsevier, vol. 138(C), pages 29-38.
    6. Zhang, Rongyan & Zhu, Fenfen & Dong, Yi & Wu, Xuemin & Sun, Yihe & Zhang, Dongrui & Zhang, Tao & Han, Meiling, 2020. "Function promotion of SO42−/Al2O3–SnO2 catalyst for biodiesel production from sewage sludge," Renewable Energy, Elsevier, vol. 147(P1), pages 275-283.
    7. Natasha Laraib & Ali Hussain & Arshad Javid & Tahir Noor & Qurat-ul-Ain Ahmad & Asma Chaudhary & Maleeha Manzoor & Muhammad Akmal & Syed Mohsin Bukhari & Waqas Ali & Tae Jin Choi & Peer M. Schenk, 2022. "Recent trends in microalgal harvesting: an overview," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8691-8721, June.
    8. Sibi G, 2018. "Microalgae Biomass Harvesting Based on pH Induced, Chemical and Bioflocculants Mediated Flocculation-A Review," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 11(3), pages 70-74, May.
    9. Yunkai Zhou & Longyan Wang & Jianping Yuan & Wei Luo & Yanxia Fu & Yang Chen & Zilu Wang & Jian Xu & Rong Lu, 2021. "Comparative Investigation on Hydrodynamic Performance of Pump-Jet Propulsion Designed by Direct and Inverse Design Methods," Mathematics, MDPI, vol. 9(4), pages 1-33, February.
    10. Nayak, Manoranjan & Rashid, Naim & Suh, William I. & Lee, Bongsoo & Chang, Yong Keun, 2019. "Performance evaluation of different cationic flocculants through pH modulation for efficient harvesting of Chlorella sp. HS2 and their impact on water reusability," Renewable Energy, Elsevier, vol. 136(C), pages 819-827.
    11. Abomohra, Abd El-Fatah & Sheikh, Huda M.A. & El-Naggar, Amal H. & Wang, Qingyuan, 2021. "Microwave vacuum co-pyrolysis of waste plastic and seaweeds for enhanced crude bio-oil recovery: Experimental and feasibility study towards industrialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathimani, Thangavel & Mallick, Nirupama, 2018. "A comprehensive review on harvesting of microalgae for biodiesel – Key challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1103-1120.
    2. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    3. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    4. Ennaceri, Houda & Fischer, Kristina & Schulze, Agnes & Moheimani, Navid Reza, 2022. "Membrane fouling control for sustainable microalgal biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Salama, El-Sayed & Kurade, Mayur B. & Abou-Shanab, Reda A.I. & El-Dalatony, Marwa M. & Yang, Il-Seung & Min, Booki & Jeon, Byong-Hun, 2017. "Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1189-1211.
    6. Vasistha, S. & Khanra, A. & Clifford, M. & Rai, M.P., 2021. "Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Li, Shuangxi & Hu, Tianyi & Xu, Yanzhe & Wang, Jingyi & Chu, Ruoyu & Yin, Zhihong & Mo, Fan & Zhu, Liandong, 2020. "A review on flocculation as an efficient method to harvest energy microalgae: Mechanisms, performances, influencing factors and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    9. Muhammad, Gul & Alam, Md Asraful & Mofijur, M. & Jahirul, M.I. & Lv, Yongkun & Xiong, Wenlong & Ong, Hwai Chyuan & Xu, Jingliang, 2021. "Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Menegazzo, Mariana Lara & Fonseca, Gustavo Graciano, 2019. "Biomass recovery and lipid extraction processes for microalgae biofuels production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 87-107.
    11. Shokravi, Zahra & Shokravi, Hoofar & Atabani, A.E. & Lau, Woei Jye & Chyuan, Ong Hwai & Ismail, Ahmad Fauzi, 2022. "Impacts of the harvesting process on microalgae fatty acid profiles and lipid yields: Implications for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Rastogi, Rajesh P. & Pandey, Ashok & Larroche, Christian & Madamwar, Datta, 2018. "Algal Green Energy – R&D and technological perspectives for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2946-2969.
    13. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Cao, Bin & Wang, Shuang & Hu, Yamin & Abomohra, Abd El-Fatah & Qian, Lili & He, Zhixia & Wang, Qian & Uzoejinwa, Benjamin Bernard & Esakkimuthu, Sivakumar, 2019. "Effect of washing with diluted acids on Enteromorpha clathrata pyrolysis products: Towards enhanced bio-oil from seaweeds," Renewable Energy, Elsevier, vol. 138(C), pages 29-38.
    15. Ana L. Gonçalves & Maria C. M. Alvim-Ferraz & Fernando G. Martins & Manuel Simões & José C. M. Pires, 2016. "Integration of Microalgae-Based Bioenergy Production into a Petrochemical Complex: Techno-Economic Assessment," Energies, MDPI, vol. 9(4), pages 1-17, March.
    16. Wu, Lan & Wei, Wei & Song, Lan & Woźniak-Karczewska, Marta & Chrzanowski, Łukasz & Ni, Bing-Jie, 2021. "Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Emanuele La Bella & Paride Salvatore Occhipinti & Ivana Puglisi & Ferdinando Fragalà & Rossella Saccone & Nunziatina Russo & Cinzia Lucia Randazzo & Cinzia Caggia & Andrea Baglieri, 2023. "Comparative Phycoremediation Performance of Three Microalgae Species in Two Different Magnitude of Pollutants in Wastewater from Farmhouse," Sustainability, MDPI, vol. 15(15), pages 1-17, July.
    18. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    19. Watanabe, Hideo & Li, Dalin & Nakagawa, Yoshinao & Tomishige, Keiichi & Kaya, Kunimitsu & Watanabe, Makoto M., 2014. "Characterization of oil-extracted residue biomass of Botryococcus braunii as a biofuel feedstock and its pyrolytic behavior," Applied Energy, Elsevier, vol. 132(C), pages 475-484.
    20. Yusaf, Talal & Al-Juboori, Raed A., 2014. "Alternative methods of microorganism disruption for agricultural applications," Applied Energy, Elsevier, vol. 114(C), pages 909-923.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:880-886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.