IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v188y2022icp211-222.html
   My bibliography  Save this article

Innovative approach for rapeseed straw recycling using black solider fly larvae: Towards enhanced energy recovery

Author

Listed:
  • Elsayed, Mahdy
  • Li, Wu
  • Abdalla, Nashwa S.
  • Ai, Ping
  • Zhang, Yanlin
  • Abomohra, Abd El-Fatah

Abstract

The present study evaluated bio-recycling of rapeseed straw (RS) mixed in different ratios with chicken manure using black soldier fly larvae (BSFL) followed by biodiesel and protein production as an innovative waste management and biorefinery route. Among different treatments, 20% RS ratio showed high fiber biodegradation with enhanced larval biomass yield and lipid accumulation. The average larval development time on the chicken manure was 18.3 days, which significantly reduced to 14.0 days using 20% RS. In addition, application of 20% RS significantly enhanced the survival rate, with higher conversion efficiency comparing to the control. Interestingly, saturated fatty acids content of the produced biodiesel at 20% RS was much higher than that reported for the biodiesel produced currently from rapeseed oil, which resulted in higher cetane number. Based on the current biodiesel industry from rapeseed oil, 1 ha of rapeseed produces 4.2 tons of dry RS annually, that can be converted to 689.4 kg ha−1 of biodiesel using BSFL. In addition, the potential application of BSFL technology could reduce CO2 emissions by 10.42 tons ha−1. In conclusion, this study suggests BSFL as a promising mini-livestock for innovative RS management through indirect conversion of lignocelluloses into biodiesel.

Suggested Citation

  • Elsayed, Mahdy & Li, Wu & Abdalla, Nashwa S. & Ai, Ping & Zhang, Yanlin & Abomohra, Abd El-Fatah, 2022. "Innovative approach for rapeseed straw recycling using black solider fly larvae: Towards enhanced energy recovery," Renewable Energy, Elsevier, vol. 188(C), pages 211-222.
  • Handle: RePEc:eee:renene:v:188:y:2022:i:c:p:211-222
    DOI: 10.1016/j.renene.2022.02.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122001719
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Qiong & Liu, Ronghou & Li, Kun & Ma, Ruijie, 2019. "A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 51-58.
    2. Khoshnevisan, Benyamin & Tabatabaei, Meisam & Tsapekos, Panagiotis & Rafiee, Shahin & Aghbashlo, Mortaza & Lindeneg, Susanne & Angelidaki, Irini, 2020. "Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    3. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    4. Noor, Zainura Zainon & Yusuf, Rafiu Olasunkanmi & Abba, Ahmad Halilu & Abu Hassan, Mohd Ariffin & Mohd Din, Mohd Fadhil, 2013. "An overview for energy recovery from municipal solid wastes (MSW) in Malaysia scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 378-384.
    5. Alexandratos, Nikos & Bruinsma, Jelle, 2012. "World agriculture towards 2030/2050: the 2012 revision," ESA Working Papers 288998, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    6. Larnaudie, Valeria & Ferrari, Mario Daniel & Lareo, Claudia, 2021. "Life cycle assessment of ethanol produced in a biorefinery from liquid hot water pretreated switchgrass," Renewable Energy, Elsevier, vol. 176(C), pages 606-616.
    7. Zheng, Longyu & Hou, Yanfei & Li, Wu & Yang, Sen & Li, Qing & Yu, Ziniu, 2012. "Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes," Energy, Elsevier, vol. 47(1), pages 225-229.
    8. Mohd-Noor, Siti-Nuraini & Wong, Chung-Yiin & Lim, Jun-Wei & Mah-Hussin, Mah-Iazam-Azuri & Uemura, Yoshimitsu & Lam, Man-Kee & Ramli, Anita & Bashir, Mohammed J.K. & Tham, Leony, 2017. "Optimization of self-fermented period of waste coconut endosperm destined to feed black soldier fly larvae in enhancing the lipid and protein yields," Renewable Energy, Elsevier, vol. 111(C), pages 646-654.
    9. Pang, Wancheng & Hou, Dejia & Ke, Jingwen & Chen, Jiangshan & Holtzapple, Mark T. & Tomberlin, Jeffery K. & Chen, Huanchun & Zhang, Jibin & Li, Qing, 2020. "Production of biodiesel from CO2 and organic wastes by fermentation and black soldier fly," Renewable Energy, Elsevier, vol. 149(C), pages 1174-1181.
    10. Pinto, Ariane S.S. & Brondi, Mariana G. & de Freitas, Juliana V. & Furlan, Felipe F. & Ribeiro, Marcelo P.A. & Giordano, Roberto C. & Farinas, Cristiane S., 2021. "Mitigating the negative impact of soluble and insoluble lignin in biorefineries," Renewable Energy, Elsevier, vol. 173(C), pages 1017-1026.
    11. Jin, Xianchun & Ma, Jiangshan & Song, Jianing & Liu, Gao-Qiang, 2020. "Saccharification and detoxification of Na2CO3 pretreated rice straw with on-site manufactured enzymes secreted by Aspergillus fumigatus to enhance bioethanol yield," Renewable Energy, Elsevier, vol. 166(C), pages 117-124.
    12. Wu, Sheng-qing & Cai, Zi-zhe & Niu, Yi & Zheng, Dong & He, Guo-rui & Wang, Yong & Yang, De-po, 2017. "A renewable lipid source for biolubricant feedstock oil from housefly (Musca domestica) larva," Renewable Energy, Elsevier, vol. 113(C), pages 546-553.
    13. Surendra, K.C. & Olivier, Robert & Tomberlin, Jeffery K. & Jha, Rajesh & Khanal, Samir Kumar, 2016. "Bioconversion of organic wastes into biodiesel and animal feed via insect farming," Renewable Energy, Elsevier, vol. 98(C), pages 197-202.
    14. Abomohra, Abd El-Fatah & Jin, Wenbiao & Tu, Renjie & Han, Song-Fang & Eid, Mohammed & Eladel, Hamed, 2016. "Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 596-606.
    15. Lever, Mitchell, 2015. "Modelling the energy performance of a farm-scale cellulose to ethanol process with on-site cellulase production and anaerobic digestion," Renewable Energy, Elsevier, vol. 74(C), pages 893-902.
    16. Pirmoradi, Neda & Ghaneian, Mohammad Taghi & Ehrampoush, Mohammad Hassan & Salmani, Mohammad Hossein & Hatami, Behnam, 2021. "The conversion of poultry slaughterhouse wastewater sludge into biodiesel: Process modeling and optimization," Renewable Energy, Elsevier, vol. 178(C), pages 1236-1249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2023. "Optimizing utilization pathways for biomass to chemicals and energy by integrating emergy analysis and particle swarm optimization (PSO)," Renewable Energy, Elsevier, vol. 202(C), pages 1448-1459.
    2. Florian Grassauer & Jannatul Ferdous & Nathan Pelletier, 2023. "Manure Valorization Using Black Soldier Fly Larvae: A Review of Current Systems, Production Characteristics, Utilized Feed Substrates, and Bioconversion and Nitrogen Conversion Efficiencies," Sustainability, MDPI, vol. 15(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung Yiin Wong & Muhammad Naeim Mohd Aris & Hanita Daud & Man Kee Lam & Ching Seong Yong & Hadura Abu Hasan & Siewhui Chong & Pau Loke Show & Oetami Dwi Hajoeningtijas & Yeek Chia Ho & Pei Sean Goh &, 2020. "In-Situ Yeast Fermentation to Enhance Bioconversion of Coconut Endosperm Waste into Larval Biomass of Hermetia illucens : Statistical Augmentation of Larval Lipid Content," Sustainability, MDPI, vol. 12(4), pages 1-10, February.
    2. Chung-Yiin Wong & Siti-Suhailah Rosli & Yoshimitsu Uemura & Yeek Chia Ho & Arunsri Leejeerajumnean & Worapon Kiatkittipong & Chin-Kui Cheng & Man-Kee Lam & Jun-Wei Lim, 2019. "Potential Protein and Biodiesel Sources from Black Soldier Fly Larvae: Insights of Larval Harvesting Instar and Fermented Feeding Medium," Energies, MDPI, vol. 12(8), pages 1-15, April.
    3. Zhu, Junyu & Liu, Xiangjie & Zhang, Xin & Deng, Bo & Xu, Chao & Zhang, Congcong & Yuan, Qiaoxia, 2023. "Experimental study on black soldier fly (Hermetia illucens L.) larvae hydrothermal liquefaction in methanol-water Co-solvent: Bio-oil yields and properties," Renewable Energy, Elsevier, vol. 218(C).
    4. Kamarulzaman, Mohd Kamal & Hafiz, M. & Abdullah, Adam & Chen, Ang Fuk & Awad, Omar I., 2019. "Combustion, performances and emissions characteristics of black soldier fly larvae oil and diesel blends in compression ignition engine," Renewable Energy, Elsevier, vol. 142(C), pages 569-580.
    5. Dave Mangindaan & Emil Robert Kaburuan & Bayu Meindrawan, 2022. "Black Soldier Fly Larvae ( Hermetia illucens ) for Biodiesel and/or Animal Feed as a Solution for Waste-Food-Energy Nexus: Bibliometric Analysis," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    6. Pang, Wancheng & Hou, Dejia & Ke, Jingwen & Chen, Jiangshan & Holtzapple, Mark T. & Tomberlin, Jeffery K. & Chen, Huanchun & Zhang, Jibin & Li, Qing, 2020. "Production of biodiesel from CO2 and organic wastes by fermentation and black soldier fly," Renewable Energy, Elsevier, vol. 149(C), pages 1174-1181.
    7. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Varjani, Sunita & Wang, Yajing & Peng, Wanxi & Pan, Junting & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "Marine shell-based biorefinery: A sustainable solution for aquaculture waste valorization," Renewable Energy, Elsevier, vol. 206(C), pages 623-634.
    8. Tuti Suryati & Euis Julaeha & Kindi Farabi & Hanies Ambarsari & Ace Tatang Hidayat, 2023. "Lauric Acid from the Black Soldier Fly ( Hermetia illucens ) and Its Potential Applications," Sustainability, MDPI, vol. 15(13), pages 1-28, June.
    9. Achoja, Felix Odemero & Enujeke, Emmanuel Chukudinife & Ogisi, Oraye Dicta & Overehirha, Rebecca Tega, 2020. "Multinomial Regression Analysis of Yam (Dioscorea Spp.) Consumers' Preferences and Varietal Diversification Pattern in Nigeria," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society (AESS), vol. 10(02), January.
    10. Costanza Jucker & Daniela Lupi & Christopher Douglas Moore & Maria Giovanna Leonardi & Sara Savoldelli, 2020. "Nutrient Recapture from Insect Farm Waste: Bioconversion with Hermetia illucens (L.) (Diptera: Stratiomyidae)," Sustainability, MDPI, vol. 12(1), pages 1-14, January.
    11. Siswo Sumardiono & Bakti Jos & Agata Advensia Eksa Dewanti & Isa Mahendra & Heri Cahyono, 2021. "Biogas Production from Coffee Pulp and Chicken Feathers Using Liquid- and Solid-State Anaerobic Digestions," Energies, MDPI, vol. 14(15), pages 1-15, August.
    12. Karami, Kavosh & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora & Kumar, Rajeev, 2022. "Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood," Energy, Elsevier, vol. 239(PE).
    13. Ahmad Aiman Zulkifli & Mohd Zulkhairi Mohd Yusoff & Latifah Abd Manaf & Mohd Rafein Zakaria & Ahmad Muhaimin Roslan & Hidayah Ariffin & Yoshihito Shirai & Mohd Ali Hassan, 2019. "Assessment of Municipal Solid Waste Generation in Universiti Putra Malaysia and Its Potential for Green Energy Production," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    14. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    15. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    16. repec:ags:ijag24:346816 is not listed on IDEAS
    17. Mounir Amdaoud, 2019. "Ressources naturelles, innovation et développement économique : vers une nouvelle approche," CEPN Working Papers 2019-06, Centre d'Economie de l'Université de Paris Nord.
    18. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    19. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    20. Bircol, Guilherme Augusto Carminato & Souza, Marcelo Pereira de & Fontes, Aurélio Teodoro & Chiarello, Adriano Garcia & Ranieri, Victor Eduardo Lima, 2018. "Planning by the rules: A fair chance for the environment in a land-use conflict area," Land Use Policy, Elsevier, vol. 76(C), pages 103-112.
    21. Maurer, Rainer, 2023. "Comparing the effect of different agricultural land-use systems on biodiversity," Land Use Policy, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:188:y:2022:i:c:p:211-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.