IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp40-49.html
   My bibliography  Save this article

Fe-promoted Ni catalyst with extremely high loading and oxygen vacancy for lipid deoxygenation into green diesel

Author

Listed:
  • Wang, Fei
  • Xu, Hui
  • Yu, Songyin
  • Zhu, Hao
  • Du, Yuchan
  • Zhang, Zeng
  • You, Chaoqun
  • Jiang, Xiaoxiang
  • Jiang, Jianchun

Abstract

The catalytic performance of Ni catalyst in lipid deoxygenation into green diesel is commonly limited by the quantity of accessible active sites, the specific surface area, and the acidity of the catalyst. To cope with these problems, the Fe-promoted Ni catalyst on ZrO2 with 60 wt% Ni loading (60%Ni–Fe/ZrO2) is synthesized by the co-precipitation method. The deoxygenation of oleic acid over 60%Ni–Fe/ZrO2 catalyst attained 98.7% conversion and 91.8% alkane yield, much higher than that of 20%Ni–Fe/ZrO2-2 prepared with the impregnation method (42.8% conversion and 16.2% alkane yield). The kinetics of octadecanol hydrotreatment revealed that the activation energy over 60%Ni–Fe/ZrO2 was much lower than Ni–Fe/ZrO2-2 (78.48 kJ/mol vs.191.90 kJ/mol). From the catalyst characterizations, the excellent performance of 60%Ni–Fe/ZrO2 was ascribed to its fine Ni particles, abundant Ni sites, high surface area, and coordinated acidity. Moreover, the mechanism of lipid deoxygenation over 60%Ni–Fe/ZrO2 was proposed.

Suggested Citation

  • Wang, Fei & Xu, Hui & Yu, Songyin & Zhu, Hao & Du, Yuchan & Zhang, Zeng & You, Chaoqun & Jiang, Xiaoxiang & Jiang, Jianchun, 2022. "Fe-promoted Ni catalyst with extremely high loading and oxygen vacancy for lipid deoxygenation into green diesel," Renewable Energy, Elsevier, vol. 197(C), pages 40-49.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:40-49
    DOI: 10.1016/j.renene.2022.07.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122010801
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lycourghiotis, Sotiris & Kordouli, Eleana & Kordulis, Christos & Bourikas, Kyriakos, 2021. "Transformation of residual fatty raw materials into third generation green diesel over a nickel catalyst supported on mineral palygorskite," Renewable Energy, Elsevier, vol. 180(C), pages 773-786.
    2. Cao, Xincheng & Long, Feng & Wang, Fei & Zhao, Jiaping & Xu, Junming & Jiang, Jianchun, 2021. "Chemoselective decarboxylation of higher aliphatic esters to diesel-range alkanes over the NiCu/Al2O3 bifunctional catalyst under mild reaction conditions," Renewable Energy, Elsevier, vol. 180(C), pages 1-13.
    3. Burimsitthigul, Thikhamporn & Yoosuk, Boonyawan & Ngamcharussrivichai, Chawalit & Prasassarakich, Pattarapan, 2021. "Hydrocarbon biofuel from hydrotreating of palm oil over unsupported Ni–Mo sulfide catalysts," Renewable Energy, Elsevier, vol. 163(C), pages 1648-1659.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsiotsias, Anastasios I. & Hafeez, Sanaa & Charisiou, Nikolaos D. & Al-Salem, Sultan M. & Manos, George & Constantinou, Achilleas & AlKhoori, Sara & Sebastian, Victor & Hinder, Steven J. & Baker, Mark, 2023. "Selective catalytic deoxygenation of palm oil to produce green diesel over Ni catalysts supported on ZrO2 and CeO2–ZrO2: Experimental and process simulation modelling studies," Renewable Energy, Elsevier, vol. 206(C), pages 582-596.
    2. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fei & Pace, Robert & Ji, Yaying & Jiang, Jianchun & Jiang, Xiaoxiang & Krystianiak, Anna & Heintz, Olivier & Caboche, Gilles & Santillan-Jimenez, Eduardo & Crocker, Mark, 2022. "Effect of Pd promotion and catalyst support on the Ni-catalyzed deoxygenation of tristearin to fuel-like hydrocarbons," Renewable Energy, Elsevier, vol. 195(C), pages 1468-1479.
    2. Shir Reen Chia & Saifuddin Nomanbhay & Kit Wayne Chew & Pau Loke Show & Jassinnee Milano & Abd Halim Shamsuddin, 2022. "Indigenous Materials as Catalyst Supports for Renewable Diesel Production in Malaysia," Energies, MDPI, vol. 15(8), pages 1-31, April.
    3. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    4. Cao, Xincheng & Long, Feng & Wang, Fei & Zhao, Jiaping & Xu, Junming & Jiang, Jianchun, 2021. "Chemoselective decarboxylation of higher aliphatic esters to diesel-range alkanes over the NiCu/Al2O3 bifunctional catalyst under mild reaction conditions," Renewable Energy, Elsevier, vol. 180(C), pages 1-13.
    5. Tsiotsias, Anastasios I. & Hafeez, Sanaa & Charisiou, Nikolaos D. & Al-Salem, Sultan M. & Manos, George & Constantinou, Achilleas & AlKhoori, Sara & Sebastian, Victor & Hinder, Steven J. & Baker, Mark, 2023. "Selective catalytic deoxygenation of palm oil to produce green diesel over Ni catalysts supported on ZrO2 and CeO2–ZrO2: Experimental and process simulation modelling studies," Renewable Energy, Elsevier, vol. 206(C), pages 582-596.
    6. Li, Xingyong & Wu, Yankun & Wang, Qi & Li, Shuirong & Ye, Yueyuan & Wang, Dechao & Zheng, Zhifeng, 2022. "Effect of preparation method of NiMo/γ-Al2O3 on the FAME hydrotreatment to produce C15–C18 alkanes," Renewable Energy, Elsevier, vol. 193(C), pages 1-12.
    7. Cai, Bo & Kang, Rui & Guo, Dayi & Feng, Junfeng & Ma, Tianyi & Pan, Hui, 2022. "An eco-friendly acidic catalyst phosphorus-doped graphitic carbon nitride for efficient conversion of fructose to 5-Hydroxymethylfurfural," Renewable Energy, Elsevier, vol. 199(C), pages 1629-1638.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:40-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.