IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2835-d792870.html
   My bibliography  Save this article

Indigenous Materials as Catalyst Supports for Renewable Diesel Production in Malaysia

Author

Listed:
  • Shir Reen Chia

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
    AAIBE Chair of Renewable Energy, Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia)

  • Saifuddin Nomanbhay

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia)

  • Kit Wayne Chew

    (School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia)

  • Pau Loke Show

    (Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
    Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia)

  • Jassinnee Milano

    (Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
    AAIBE Chair of Renewable Energy, Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia)

  • Abd Halim Shamsuddin

    (AAIBE Chair of Renewable Energy, Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia)

Abstract

High energy demand from the market due to the rapid increment of the human population worldwide has urged society to explore alternatives to replace non-renewable energy. Renewable diesel produced from biomass could be the next potential energy source for its high stability, long-term storage, and comparable performance with diesel fuels. In producing renewable diesel, the application of catalyst is essential, and the catalyst support is synthesized with the catalyst to enhance the reaction rate and catalytic properties. In this review, the type of catalyst support will be reviewed along with a brief introduction to biodiesel and renewable diesel production, especially focusing on zeolites as the catalyst support. The enhancement of catalyst support will be critically discussed to improve the catalytic performance of support in renewable diesel production and important aspects such as the stability and recyclability of the supported catalyst are included. The application of the supported catalyst in increasing the selectivity and yield of renewable diesel is significant, in which the catalytic properties depend on the interaction between catalyst and catalyst support. The supported catalyst as a favorable substance to assist in enhancing renewable diesel yield could lead to a sustainable and greener future for the biofuel industry in Malaysia.

Suggested Citation

  • Shir Reen Chia & Saifuddin Nomanbhay & Kit Wayne Chew & Pau Loke Show & Jassinnee Milano & Abd Halim Shamsuddin, 2022. "Indigenous Materials as Catalyst Supports for Renewable Diesel Production in Malaysia," Energies, MDPI, vol. 15(8), pages 1-31, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2835-:d:792870
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2835/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2835/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yujiao & Niu, Shengli & Han, Kuihua & Li, Yingjie & Lu, Chunmei, 2021. "Synthesis of the SrO–CaO–Al2O3 trimetallic oxide catalyst for transesterification to produce biodiesel," Renewable Energy, Elsevier, vol. 168(C), pages 981-990.
    2. Awalludin, Mohd Fahmi & Sulaiman, Othman & Hashim, Rokiah & Nadhari, Wan Noor Aidawati Wan, 2015. "An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1469-1484.
    3. Kumar, Dipesh & Singh, Bhaskar & Korstad, John, 2017. "Utilization of lignocellulosic biomass by oleaginous yeast and bacteria for production of biodiesel and renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 654-671.
    4. Dechakhumwat, Suppasate & Hongmanorom, Plaifa & Thunyaratchatanon, Chachchaya & Smith, Siwaporn Meejoo & Boonyuen, Supakorn & Luengnaruemitchai, Apanee, 2020. "Catalytic activity of heterogeneous acid catalysts derived from corncob in the esterification of oleic acid with methanol," Renewable Energy, Elsevier, vol. 148(C), pages 897-906.
    5. Lycourghiotis, Sotiris & Kordouli, Eleana & Kordulis, Christos & Bourikas, Kyriakos, 2021. "Transformation of residual fatty raw materials into third generation green diesel over a nickel catalyst supported on mineral palygorskite," Renewable Energy, Elsevier, vol. 180(C), pages 773-786.
    6. Hongloi, Nitchakul & Prapainainar, Paweena & Seubsai, Anusorn & Sudsakorn, Kandis & Prapainainar, Chaiwat, 2019. "Nickel catalyst with different supports for green diesel production," Energy, Elsevier, vol. 182(C), pages 306-320.
    7. Papageridis, Kyriakos N. & Charisiou, Nikolaos D. & Douvartzides, Savvas & Sebastian, Victor & Hinder, Steven J. & Baker, Mark A. & AlKhoori, Sara & Polychronopoulou, Kyriaki & Goula, Maria A., 2020. "Promoting effect of CaO-MgO mixed oxide on Ni/γ-Al2O3 catalyst for selective catalytic deoxygenation of palm oil," Renewable Energy, Elsevier, vol. 162(C), pages 1793-1810.
    8. Burimsitthigul, Thikhamporn & Yoosuk, Boonyawan & Ngamcharussrivichai, Chawalit & Prasassarakich, Pattarapan, 2021. "Hydrocarbon biofuel from hydrotreating of palm oil over unsupported Ni–Mo sulfide catalysts," Renewable Energy, Elsevier, vol. 163(C), pages 1648-1659.
    9. Khairul Azly Zahan & Manabu Kano, 2018. "Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review," Energies, MDPI, vol. 11(8), pages 1-25, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    2. Wang, Fei & Xu, Hui & Yu, Songyin & Zhu, Hao & Du, Yuchan & Zhang, Zeng & You, Chaoqun & Jiang, Xiaoxiang & Jiang, Jianchun, 2022. "Fe-promoted Ni catalyst with extremely high loading and oxygen vacancy for lipid deoxygenation into green diesel," Renewable Energy, Elsevier, vol. 197(C), pages 40-49.
    3. Tsiotsias, Anastasios I. & Hafeez, Sanaa & Charisiou, Nikolaos D. & Al-Salem, Sultan M. & Manos, George & Constantinou, Achilleas & AlKhoori, Sara & Sebastian, Victor & Hinder, Steven J. & Baker, Mark, 2023. "Selective catalytic deoxygenation of palm oil to produce green diesel over Ni catalysts supported on ZrO2 and CeO2–ZrO2: Experimental and process simulation modelling studies," Renewable Energy, Elsevier, vol. 206(C), pages 582-596.
    4. Zhang, Bingxin & Gao, Ming & Tang, Weiqi & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Xie, Haijiao, 2023. "Reduced surface sulphonic acid concentration Alleviates carbon-based solid acid catalysts deactivation in biodiesel production," Energy, Elsevier, vol. 271(C).
    5. Goh, Brandon Han Hoe & Chong, Cheng Tung & Milano, Jassinnee & Tiong, Sieh Kiong & Cui, Yanbin & Ng, Jo-Han, 2024. "Response optimisation of TiO2-supported bimetallic NiCo catalyst for the cracking and deoxygenation of waste cooking oil into jet-fuel range hydrocarbon fuels under non-hydrogen environment," Energy, Elsevier, vol. 309(C).
    6. Dar, Rouf Ahmad & Tsui, To-Hung & Zhang, Le & Tong, Yen Wah & Sharon, Sigal & Shoseyov, Oded & Liu, Ronghou, 2024. "Fermentation of organic wastes through oleaginous microorganisms for lipid production - Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    7. Jean de Dieu Marcel Ufitikirezi & Martin Filip & Mohammad Ghorbani & Tomáš Zoubek & Pavel Olšan & Roman Bumbálek & Miroslav Strob & Petr Bartoš & Sandra Nicole Umurungi & Yves Theoneste Murindangabo &, 2024. "Agricultural Waste Valorization: Exploring Environmentally Friendly Approaches to Bioenergy Conversion," Sustainability, MDPI, vol. 16(9), pages 1-24, April.
    8. Lani, Nurul Saadiah & Ngadi, Norzita & Haron, Saharudin & Mohammed Inuwa, Ibrahim & Anako Opotu, Lawal, 2024. "The catalytic effect of calcium oxide and magnetite loading on magnetically supported calcium oxide-zeolite catalyst for biodiesel production from used cooking oil," Renewable Energy, Elsevier, vol. 222(C).
    9. Li, Ying & Niu, Shengli & Wang, Jun & Zhou, Wenbo & Wang, Yongzheng & Han, Kuihua & Lu, Chunmei, 2022. "Mesoporous SrTiO3 perovskite as a heterogeneous catalyst for biodiesel production: Experimental and DFT studies," Renewable Energy, Elsevier, vol. 184(C), pages 164-175.
    10. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    11. Ounsuk, Patravee & Prapainainar, Chaiwat & Hongloi, Nitchakul & Sudsakorn, Kandis & Lalitpattarakit, Montida & Seubsai, Anusorn & Kiatkittipong, Worapon & Wongsakulphasatch, Suwimol & Assabumrungrat, , 2024. "Box-Behnken design optimizing operating conditions in bio-hydrogenated diesel production by using BHD product as a solvent," Renewable Energy, Elsevier, vol. 232(C).
    12. Zhang, Bingxin & Gao, Ming & Tang, Weiqi & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Cheung, Siu Ming & Chen, Xiankun, 2023. "Esterification efficiency improvement of carbon-based solid acid catalysts induced by biomass pretreatments: Intrinsic mechanism," Energy, Elsevier, vol. 263(PB).
    13. Rozina, & Asif, Saira & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nsir, 2017. "Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 687-702.
    14. Anderson Breno Souza & Alvaro Antonio Villa Ochoa & José Ângelo Peixoto da Costa & Gustavo de Novaes Pires Leite & Héber Claudius Nunes Silva & Andrezza Carolina Carneiro Tómas & David Campos Barbosa , 2023. "A Review of Tropical Organic Materials for Biodiesel as a Substitute Energy Source in Internal Combustion Engines: A Viable Solution?," Energies, MDPI, vol. 16(9), pages 1-25, April.
    15. Rahmath Abdulla & Eryati Derman & Thivyasri K.Mathialagan & Abu Zahrim Yaser & Mohd Armi Abu Samah & Jualang Azlan Gansau & Syed Umar Faruq Syed Najmuddin, 2022. "Biodiesel Production from Waste Palm Cooking Oil Using Immobilized Candida rugosa Lipase," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    16. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    17. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    18. Lucía Quesada & Mónica Calero de Hoces & M. A. Martín-Lara & Germán Luzón & G. Blázquez, 2020. "Performance of Different Catalysts for the In Situ Cracking of the Oil-Waxes Obtained by the Pyrolysis of Polyethylene Film Waste," Sustainability, MDPI, vol. 12(13), pages 1-15, July.
    19. Ariodillah Hidayat & Bernadette Robiani & Taufiq Marwa & Suhel Suhel, 2023. "Competitiveness, Market Structure, and Energy Policies: A Case Study of the World s Largest Crude Palm Oil Exporter," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 111-121, May.
    20. Jakub Čedík & Martin Pexa & Michal Holúbek & Zdeněk Aleš & Radek Pražan & Peter Kuchar, 2020. "Effect of Diesel Fuel-Coconut Oil-Butanol Blends on Operational Parameters of Diesel Engine," Energies, MDPI, vol. 13(15), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2835-:d:792870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.