IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v101y2019icp568-589.html
   My bibliography  Save this article

Green and renewable bio-diesel produce from oil hydrodeoxygenation: Strategies for catalyst development and mechanism

Author

Listed:
  • Chen, Shuang
  • Zhou, Guilin
  • Miao, Caixia

Abstract

Green and renewable bio-diesel prepared from oils catalytic hydrodeoxygenation (HDO) will have a great impact on clean energy structure and industrial application. The core issue of catalytic oils HDO research is still the development of catalysts with high performance, and it has become the research focus of researchers in recent years. The bio-diesel after deoxygenationis similar to petroleum fuel in composition, which has better fuelproperties because of its higher cetane number, higher energy density, and very low sulfur content. Therefore, the prepared bio-diesel can be employed directly in fuel industry. In order to ensure that the catalyst has superior deoxidization performances, it should have good “H-H” dissociation ability, “C-O” and “C=O” adsorption and activation abilities. To obtain the expected products, feasible production processes, and suitable catalyst systems are needed. In this paper, the status and reaction system of oil HDO conversion in recent years are reviewed, and the catalytic performances of the corresponding catalyst in the oil HDO reaction is described in detail. In addition, this review also involed the effects of support, promoters, interaction between active components and support on the HDO activity and selectivity, and detailed information about the reaction mechanism. The HDO performances of the corresponding catalyst can be effectively improved by optimizing the active components and controlling the properties of the support. The catalyst used into the HDO reaction is mainly concentrated on the supported catalyst. In addition, the choice of the support is based on the prepared catalyst with the best physical and chemical properties. What's more, ensuring the prepared catalyst has simple deoxidation route, suitable acid strength, high “C-O” hydrogenolysis activity and low carbon deposition performances. The selection of the metal active component mainly depends on the model compound, owing to the deoxidization pathway of the model compound is mainly determined by the active center. The reaction pathway mainly contains hydrolysis, HDO, cracking, hydrogenation, decarbonylation, and decarboxylation reaction. In addition, several outlooks on the development of catalyst with high performance, the future research, and the development direction of bio-diesel produced by oils HDO reaction are also addressed in this paper.

Suggested Citation

  • Chen, Shuang & Zhou, Guilin & Miao, Caixia, 2019. "Green and renewable bio-diesel produce from oil hydrodeoxygenation: Strategies for catalyst development and mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 568-589.
  • Handle: RePEc:eee:rensus:v:101:y:2019:i:c:p:568-589
    DOI: 10.1016/j.rser.2018.11.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118307810
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.11.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    2. Li, Yuping & Huang, Xiaoming & Zhang, Qian & Chen, Lungang & Zhang, Xinghua & Wang, Tiejun & Ma, Longlong, 2015. "Hydrogenation and hydrodeoxygenation of difurfurylidene acetone to liquid alkanes over Raney Ni and the supported Pt catalysts," Applied Energy, Elsevier, vol. 160(C), pages 990-998.
    3. Li, Xin & Luo, Xingyi & Jin, Yangbin & Li, Jinyan & Zhang, Hongdan & Zhang, Aiping & Xie, Jun, 2018. "Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3762-3797.
    4. Datta, Ambarish & Mandal, Bijan Kumar, 2016. "A comprehensive review of biodiesel as an alternative fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 799-821.
    5. Chen, Shuang & Miao, Caixia & Luo, Yan & Zhou, Guilin & Xiong, Kun & Jiao, Zhaojie & Zhang, Xianming, 2018. "Study of catalytic hydrodeoxygenation performance of Ni catalysts: Effects of prepared method," Renewable Energy, Elsevier, vol. 115(C), pages 1109-1117.
    6. Arun, Naveenji & Sharma, Rajesh V. & Dalai, Ajay K., 2015. "Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 240-255.
    7. Ameen, Mariam & Azizan, Mohammad Tazli & Yusup, Suzana & Ramli, Anita & Yasir, Madiha, 2017. "Catalytic hydrodeoxygenation of triglycerides: An approach to clean diesel fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1072-1088.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De-Chang Li & Zhengyi Pan & Zhengbin Tian & Qian Zhang & Xiaohui Deng & Heqing Jiang & Guang-Hui Wang, 2024. "Frustrated Lewis pair catalyst realizes efficient green diesel production," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Miao, Caixia & Zhou, Guilin & Chen, Shuang & Xie, Hongmei & Zhang, Xianming, 2020. "Synergistic effects between Cu and Ni species in NiCu/γ-Al2O3 catalysts for hydrodeoxygenation of methyl laurate," Renewable Energy, Elsevier, vol. 153(C), pages 1439-1454.
    3. Ho, Calvin K. & McAuley, Kimberley B. & Peppley, Brant A., 2019. "Biolubricants through renewable hydrocarbons: A perspective for new opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Alnarabiji, Mohamad Sahban & Tantawi, Omar & Ramli, Anita & Mohd Zabidi, Noor Asmawati & Ghanem, Ouahid Ben & Abdullah, Bawadi, 2019. "Comprehensive review of structured binary Ni-NiO catalyst: Synthesis, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. George Petropoulos & John Zafeiropoulos & Eleana Kordouli & Alexis Lycourghiotis & Christos Kordulis & Kyriakos Bourikas, 2023. "Influence of Nickel Loading and the Synthesis Method on the Efficiency of Ni/TiO 2 Catalysts for Renewable Diesel Production," Energies, MDPI, vol. 16(11), pages 1-15, May.
    6. Mohamed, Badr A. & Ruan, Roger & Bilal, Muhammad & Periyasamy, Selvakumar & Awasthi, Mukesh Kumar & Rajamohan, Natarajan & Leng, Lijian, 2024. "Sewage sludge co-pyrolysis with agricultural/forest residues: A comparative life-cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Zharova, P.A. & Chistyakov, A.V. & Shapovalov, S.S. & Pasynskii, A.A. & Tsodikov, M.V., 2019. "Original Pt-Sn/Al2O3 catalyst for selective hydrodeoxygenation of vegetable oils," Energy, Elsevier, vol. 172(C), pages 18-25.
    8. Nils Kretzschmar & Markus Seifert & Oliver Busse & Jan J. Weigand, 2022. "Prediction of Retention Indices and Response Factors of Oxygenates for GC-FID by Multilinear Regression," Data, MDPI, vol. 7(9), pages 1-12, September.
    9. Zamani, Ali Salehi & Saidi, Majid & Najafabadi, Ali Taheri, 2023. "Selective production of diesel-like alkanes via Neem seed oil hydrodeoxygenation over Ni/MgSiO3 catalyst," Renewable Energy, Elsevier, vol. 209(C), pages 462-470.
    10. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsiotsias, Anastasios I. & Hafeez, Sanaa & Charisiou, Nikolaos D. & Al-Salem, Sultan M. & Manos, George & Constantinou, Achilleas & AlKhoori, Sara & Sebastian, Victor & Hinder, Steven J. & Baker, Mark, 2023. "Selective catalytic deoxygenation of palm oil to produce green diesel over Ni catalysts supported on ZrO2 and CeO2–ZrO2: Experimental and process simulation modelling studies," Renewable Energy, Elsevier, vol. 206(C), pages 582-596.
    2. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    3. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.
    5. Babazadeh, Reza, 2017. "Optimal design and planning of biodiesel supply chain considering non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1089-1100.
    6. Ho, Calvin K. & McAuley, Kimberley B. & Peppley, Brant A., 2019. "Biolubricants through renewable hydrocarbons: A perspective for new opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Ameen, Mariam & Azizan, Mohammad Tazli & Yusup, Suzana & Ramli, Anita & Shahbaz, Muhammad & Aqsha, Aqsha, 2020. "Process optimization of green diesel selectivity and understanding of reaction intermediates," Renewable Energy, Elsevier, vol. 149(C), pages 1092-1106.
    8. Ooi, Xian Yih & Gao, Wei & Ong, Hwai Chyuan & Lee, Hwei Voon & Juan, Joon Ching & Chen, Wei Hsin & Lee, Keat Teong, 2019. "Overview on catalytic deoxygenation for biofuel synthesis using metal oxide supported catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 834-852.
    9. Miao, Caixia & Zhou, Guilin & Chen, Shuang & Xie, Hongmei & Zhang, Xianming, 2020. "Synergistic effects between Cu and Ni species in NiCu/γ-Al2O3 catalysts for hydrodeoxygenation of methyl laurate," Renewable Energy, Elsevier, vol. 153(C), pages 1439-1454.
    10. Burimsitthigul, Thikhamporn & Yoosuk, Boonyawan & Ngamcharussrivichai, Chawalit & Prasassarakich, Pattarapan, 2021. "Hydrocarbon biofuel from hydrotreating of palm oil over unsupported Ni–Mo sulfide catalysts," Renewable Energy, Elsevier, vol. 163(C), pages 1648-1659.
    11. Xing, Shiyou & Fu, Junying & Li, Ming & Yang, Gaixiu & Lv, Pengmei, 2024. "Emerging catalysis in solvent-free hydrodeoxygenation of waste lipids under mild conditions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    12. Papageridis, Kyriakos N. & Charisiou, Nikolaos D. & Douvartzides, Savvas & Sebastian, Victor & Hinder, Steven J. & Baker, Mark A. & AlKhoori, Sara & Polychronopoulou, Kyriaki & Goula, Maria A., 2020. "Promoting effect of CaO-MgO mixed oxide on Ni/γ-Al2O3 catalyst for selective catalytic deoxygenation of palm oil," Renewable Energy, Elsevier, vol. 162(C), pages 1793-1810.
    13. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    14. Why, Elaine Siew Kuan & Ong, Hwai Chyuan & Lee, Hwei Voon & Chen, Wei-Hsin & Asikin-Mijan, N. & Varman, Mahendra & Loh, Wen Jing, 2022. "Single-step catalytic deoxygenation of palm feedstocks for the production of sustainable bio-jet fuel," Energy, Elsevier, vol. 239(PB).
    15. Li, Xiangping & Chen, Lei & Chen, Guanyi & Zhang, Jianguang & Liu, Juping, 2020. "The relationship between acidity, dispersion of nickel, and performance of Ni/Al-SBA-15 catalyst on eugenol hydrodeoxygenation," Renewable Energy, Elsevier, vol. 149(C), pages 609-616.
    16. Wang, Fei & Pace, Robert & Ji, Yaying & Jiang, Jianchun & Jiang, Xiaoxiang & Krystianiak, Anna & Heintz, Olivier & Caboche, Gilles & Santillan-Jimenez, Eduardo & Crocker, Mark, 2022. "Effect of Pd promotion and catalyst support on the Ni-catalyzed deoxygenation of tristearin to fuel-like hydrocarbons," Renewable Energy, Elsevier, vol. 195(C), pages 1468-1479.
    17. Ennaceri, Houda & Fischer, Kristina & Schulze, Agnes & Moheimani, Navid Reza, 2022. "Membrane fouling control for sustainable microalgal biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Hoseinpour, Marziyeh & Sadrnia, Hassan & Tabasizadeh, Mohammad & Ghobadian, Barat, 2017. "Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation," Energy, Elsevier, vol. 141(C), pages 2408-2420.
    19. Yu, Ziyue & Zhang, Fan & Gao, Chenzhen & Mangi, Eugenio & Ali, Cheshmehzangi, 2024. "The potential for bioenergy generated on marginal land to offset agricultural greenhouse gas emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    20. S. Charan Kumar & Amit Kumar Thakur & J. Ronald Aseer & Sendhil Kumar Natarajan & Rajesh Singh & Neeraj Priyadarshi & Bhekisipho Twala, 2022. "An Experimental Analysis and ANN Based Parameter Optimization of the Influence of Microalgae Spirulina Blends on CI Engine Attributes," Energies, MDPI, vol. 15(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:101:y:2019:i:c:p:568-589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.