IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp498-508.html
   My bibliography  Save this article

Wood pellet quality depending on dendromass species

Author

Listed:
  • Stolarski, Mariusz J.
  • Stachowicz, Paweł
  • Dudziec, Paweł

Abstract

Pellet consumption and the number of pellet-fired boilers have been growing steadily in Europe, which is a consequence of their compactness, the automated fuel feeding process and the overall system operation. This increase in the share of biomass-fired boilers is also noticeable in Poland, with automatic wood pellet boilers accounting for the majority of them. However, wood biomass is diverse with respect to its properties, determined by its systematic genus, among other things. Therefore, this research examines a diversity of seven types of pellets produced from various genera of trees sawdust (coniferous and deciduous). This is important as uncertainty about the impact of the raw material properties on the pellet quality and meeting or not market standards are obstacles faced by the sectors using this biofuel. The thermophysical properties and elementary composition were determined, and all results were referred to ISO 17225–2:2021-10 standards, the Pellet Fuels Institute and the Korea Forest Research Institute. The systematic tree genus was found to significantly differentiate all pellet quality parameters, and only pellets made from two out of the seven tree species (P. sylvestris and P. strobus) met the most strict standards contained in each of the three norms.

Suggested Citation

  • Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:498-508
    DOI: 10.1016/j.renene.2022.08.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122011818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrea Acampora & Vincenzo Civitarese & Giulio Sperandio & Negar Rezaei, 2021. "Qualitative Characterization of the Pellet Obtained from Hazelnut and Olive Tree Pruning," Energies, MDPI, vol. 14(14), pages 1-15, July.
    2. Alessio Ilari & Ester Foppa Pedretti & Carmine De Francesco & Daniele Duca, 2021. "Pellet Production from Residual Biomass of Greenery Maintenance in a Small-Scale Company to Improve Sustainability," Resources, MDPI, vol. 10(12), pages 1-12, December.
    3. Mariusz Jerzy Stolarski & Paweł Stachowicz & Waldemar Sieniawski & Michał Krzyżaniak & Ewelina Olba-Zięty, 2021. "Quality and Delivery Costs of Wood Chips by Railway vs. Road Transport," Energies, MDPI, vol. 14(21), pages 1-17, October.
    4. Mariusz Jerzy Stolarski & Michał Krzyżaniak & Kazimierz Warmiński & Dariusz Załuski & Ewelina Olba-Zięty, 2020. "Willow Biomass as Energy Feedstock: The Effect of Habitat, Genotype and Harvest Rotation on Thermophysical Properties and Elemental Composition," Energies, MDPI, vol. 13(16), pages 1-17, August.
    5. Dias, Goretty M. & Ayer, Nathan W. & Kariyapperuma, Kumudinie & Thevathasan, Naresh & Gordon, Andrew & Sidders, Derek & Johannesson, Gudmundur H., 2017. "Life cycle assessment of thermal energy production from short-rotation willow biomass in Southern Ontario, Canada," Applied Energy, Elsevier, vol. 204(C), pages 343-352.
    6. Adams, P.W.R. & Shirley, J.E.J. & McManus, M.C., 2015. "Comparative cradle-to-gate life cycle assessment of wood pellet production with torrefaction," Applied Energy, Elsevier, vol. 138(C), pages 367-380.
    7. Noorfidza Yub Harun & Ashak Mahmud Parvez & Muhammad T. Afzal, 2018. "Process and Energy Analysis of Pelleting Agricultural and Woody Biomass Blends," Sustainability, MDPI, vol. 10(6), pages 1-9, May.
    8. Pegoretti Leite de Souza, Hector Jesus & Muñoz, Fernando & Mendonça, Regis Teixeira & Sáez, Katia & Olave, Rodrigo & Segura, Cristina & de Souza, Daniel P.L. & de Paula Protásio, Thiago & Rodríguez-So, 2021. "Influence of lignin distribution, physicochemical characteristics and microstructure on the quality of biofuel pellets made from four different types of biomass," Renewable Energy, Elsevier, vol. 163(C), pages 1802-1816.
    9. Vincenzo Civitarese & Andrea Acampora & Giulio Sperandio & Alberto Assirelli & Rodolfo Picchio, 2019. "Production of Wood Pellets from Poplar Trees Managed as Coppices with Different Harvesting Cycles," Energies, MDPI, vol. 12(15), pages 1-16, August.
    10. Alessandra Fusi & Jacopo Bacenetti & Andrea R. Proto & Doriana E. A. Tedesco & Domenico Pessina & Davide Facchinetti, 2020. "Pellet Production from Miscanthus: Energy and Environmental Assessment," Energies, MDPI, vol. 14(1), pages 1-14, December.
    11. Xuyang Cui & Junhong Yang & Xinyu Shi & Wanning Lei & Tao Huang & Chao Bai, 2019. "Experimental Investigation on the Energy Consumption, Physical, and Thermal Properties of a Novel Pellet Fuel Made from Wood Residues with Microalgae as a Binder," Energies, MDPI, vol. 12(18), pages 1-26, September.
    12. Samuelsson, Robert & Larsson, Sylvia H. & Thyrel, Mikael & Lestander, Torbjörn A., 2012. "Moisture content and storage time influence the binding mechanisms in biofuel wood pellets," Applied Energy, Elsevier, vol. 99(C), pages 109-115.
    13. Mariusz Jerzy Stolarski & Paweł Dudziec & Michał Krzyżaniak & Ewelina Olba-Zięty, 2021. "Solid Biomass Energy Potential as a Development Opportunity for Rural Communities," Energies, MDPI, vol. 14(12), pages 1-21, June.
    14. Sae Byul Kang & Bong Suk Sim & Jong Jin Kim, 2017. "Volume and Mass Measurement of a Burning Wood Pellet by Image Processing," Energies, MDPI, vol. 10(5), pages 1-13, May.
    15. Aneta Bełdycka-Bórawska & Piotr Bórawski & Michał Borychowski & Rafał Wyszomierski & Marek Bartłomiej Bórawski & Tomasz Rokicki & Luiza Ochnio & Krzysztof Jankowski & Bartosz Mickiewicz & James W. Dun, 2021. "Development of Solid Biomass Production in Poland, Especially Pellet, in the Context of the World’s and the European Union’s Climate and Energy Policies," Energies, MDPI, vol. 14(12), pages 1-22, June.
    16. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak & Kazimierz Warmiński, 2020. "Willow Cultivation as Feedstock for Bioenergy-External Production Cost," Energies, MDPI, vol. 13(18), pages 1-17, September.
    17. Johanna Gaitán-Alvarez & Roger Moya & Allen Puente-Urbina & Ana Rodriguez-Zuñiga, 2017. "Physical and Compression Properties of Pellets Manufactured with the Biomass of Five Woody Tropical Species of Costa Rica Torrefied at Different Temperatures and Times," Energies, MDPI, vol. 10(8), pages 1-17, August.
    18. Mariusz Jerzy Stolarski & Paweł Dudziec & Ewelina Olba-Zięty & Paweł Stachowicz & Michał Krzyżaniak, 2022. "Forest Dendromass as Energy Feedstock: Diversity of Properties and Composition Depending on Systematic Genus and Organ," Energies, MDPI, vol. 15(4), pages 1-60, February.
    19. Peter Križan & Miloš Matú & Ľubomír Šooš & Juraj Beniak, 2015. "Behavior of Beech Sawdust during Densification into a Solid Biofuel," Energies, MDPI, vol. 8(7), pages 1-17, June.
    20. Roy, Murari Mohon & Dutta, Animesh & Corscadden, Kenny, 2013. "An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace," Applied Energy, Elsevier, vol. 108(C), pages 298-307.
    21. Stolarski, Mariusz J. & Szczukowski, Stefan & Tworkowski, Józef & Krzyżaniak, Michał & Gulczyński, Paweł & Mleczek, Mirosław, 2013. "Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass," Renewable Energy, Elsevier, vol. 57(C), pages 20-26.
    22. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    23. Hamid Gilvari & Wiebren De Jong & Dingena L. Schott, 2020. "The Effect of Biomass Pellet Length, Test Conditions and Torrefaction on Mechanical Durability Characteristics According to ISO Standard 17831-1," Energies, MDPI, vol. 13(11), pages 1-16, June.
    24. Carvalho, Lara & Wopienka, Elisabeth & Pointner, Christian & Lundgren, Joakim & Verma, Vijay Kumar & Haslinger, Walter & Schmidl, Christoph, 2013. "Performance of a pellet boiler fired with agricultural fuels," Applied Energy, Elsevier, vol. 104(C), pages 286-296.
    25. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    26. Esperanza Monedero & Henar Portero & Magín Lapuerta, 2018. "Combustion of Poplar and Pine Pellet Blends in a 50 kW Domestic Boiler: Emissions and Combustion Efficiency," Energies, MDPI, vol. 11(6), pages 1-17, June.
    27. Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
    28. Marta Jach-Nocoń & Grzegorz Pełka & Wojciech Luboń & Tomasz Mirowski & Adam Nocoń & Przemysław Pachytel, 2021. "An Assessment of the Efficiency and Emissions of a Pellet Boiler Combusting Multiple Pellet Types," Energies, MDPI, vol. 14(15), pages 1-15, July.
    29. Rabaçal, M. & Fernandes, U. & Costa, M., 2013. "Combustion and emission characteristics of a domestic boiler fired with pellets of pine, industrial wood wastes and peach stones," Renewable Energy, Elsevier, vol. 51(C), pages 220-226.
    30. Zawiślak, Kazimierz & Sobczak, Paweł & Kraszkiewicz, Artur & Niedziółka, Ignacy & Parafiniuk, Stanisław & Kuna-Broniowska, Izabela & Tanaś, Wojciech & Żukiewicz-Sobczak, Wioletta & Obidziński, Sławomi, 2020. "The use of lignocellulosic waste in the production of pellets for energy purposes," Renewable Energy, Elsevier, vol. 145(C), pages 997-1003.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
    2. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    3. Anita Konieczna & Kamila Mazur & Adam Koniuszy & Andrzej Gawlik & Igor Sikorski, 2022. "Thermal Energy and Exhaust Emissions of a Gasifier Stove Feeding Pine and Hemp Pellets," Energies, MDPI, vol. 15(24), pages 1-17, December.
    4. Małgorzata Dula & Artur Kraszkiewicz & Stanisław Parafiniuk, 2024. "Combustion Efficiency of Various Forms of Solid Biofuels in Terms of Changes in the Method of Fuel Feeding into the Combustion Chamber," Energies, MDPI, vol. 17(12), pages 1-20, June.
    5. Stolarski, Mariusz J. & Dudziec, Paweł & Krzyżaniak, Michał & Graban, Łukasz & Lajszner, Waldemar & Olba–Zięty, Ewelina, 2024. "How do key for the bioenergy industry properties of baled biomass change over two years of storage?," Renewable Energy, Elsevier, vol. 224(C).
    6. Giulio Sperandio & Alessandro Suardi & Andrea Acampora & Vincenzo Civitarese, 2024. "Eco-Efficiency of Pellet Production from Dedicated Poplar Plantations," Energies, MDPI, vol. 17(13), pages 1-23, June.
    7. Dudziec, Paweł & Stachowicz, Paweł & Stolarski, Mariusz J., 2023. "Diversity of properties of sawmill residues used as feedstock for energy generation," Renewable Energy, Elsevier, vol. 202(C), pages 822-833.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    2. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    3. Paweł Stachowicz & Mariusz Jerzy Stolarski, 2022. "Thermophysical Properties and Elemental Composition of Black Locust, Poplar and Willow Biomass," Energies, MDPI, vol. 16(1), pages 1-16, December.
    4. Wentao Li & Mingfeng Wang & Fanbin Meng & Yifei Zhang & Bo Zhang, 2022. "A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets," Energies, MDPI, vol. 15(19), pages 1-23, October.
    5. Ozgen, S. & Cernuschi, S. & Caserini, S., 2021. "An overview of nitrogen oxides emissions from biomass combustion for domestic heat production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Sungur, Bilal & Basar, Cem, 2023. "Experimental investigation of the effect of supply airflow position, excess air ratio and thermal power input at burner pot on the thermal and emission performances in a pellet stove," Renewable Energy, Elsevier, vol. 202(C), pages 1248-1258.
    7. Sungur, Bilal & Topaloglu, Bahattin, 2019. "An experimental investigation of the effect of smoke tube configuration on the performance and emission characteristics of pellet-fuelled boilers," Renewable Energy, Elsevier, vol. 143(C), pages 121-129.
    8. Dudziec, Paweł & Stachowicz, Paweł & Stolarski, Mariusz J., 2023. "Diversity of properties of sawmill residues used as feedstock for energy generation," Renewable Energy, Elsevier, vol. 202(C), pages 822-833.
    9. Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).
    10. Magdalena Dołżyńska & Sławomir Obidziński & Jolanta Piekut & Güray Yildiz, 2020. "The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions," Energies, MDPI, vol. 13(19), pages 1-19, October.
    11. Pierdicca, Roberto & Balestra, Mattia & Micheletti, Giulia & Felicetti, Andrea & Toscano, Giuseppe, 2022. "Semi-automatic detection and segmentation of wooden pellet size exploiting a deep learning approach," Renewable Energy, Elsevier, vol. 197(C), pages 406-416.
    12. Sławomir Obidziński & Magdalena Joka Yildiz & Sebastian Dąbrowski & Jan Jasiński & Wojciech Czekała, 2022. "Application of Post-Flotation Dairy Sludge in the Production of Wood Pellets: Pelletization and Combustion Analysis," Energies, MDPI, vol. 15(24), pages 1-19, December.
    13. Fournel, S. & Palacios, J.H. & Morissette, R. & Villeneuve, J. & Godbout, S. & Heitz, M. & Savoie, P., 2015. "Influence of biomass properties on technical and environmental performance of a multi-fuel boiler during on-farm combustion of energy crops," Applied Energy, Elsevier, vol. 141(C), pages 247-259.
    14. Jakub Stolarski & Sławomir Wierzbicki & Szymon Nitkiewicz & Mariusz Jerzy Stolarski, 2023. "Wood Chip Production Efficiency Depending on Chipper Type," Energies, MDPI, vol. 16(13), pages 1-15, June.
    15. Marcin Jewiarz & Marek Wróbel & Krzysztof Mudryk & Szymon Szufa, 2020. "Impact of the Drying Temperature and Grinding Technique on Biomass Grindability," Energies, MDPI, vol. 13(13), pages 1-22, July.
    16. Jakub Styks & Marek Wróbel & Jarosław Frączek & Adrian Knapczyk, 2020. "Effect of Compaction Pressure and Moisture Content on Quality Parameters of Perennial Biomass Pellets," Energies, MDPI, vol. 13(8), pages 1-20, April.
    17. Maaz Hassan & Naveed Usman & Majid Hussain & Adnan Yousaf & Muhammad Aamad Khattak & Sidra Yousaf & Rankeshwarnath Sanjay Mishr & Sana Ahmad & Fariha Rehman & Ahmad Rashedi, 2023. "Environmental and Socio-Economic Assessment of Biomass Pellets Biofuel in Hazara Division, Pakistan," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    18. Sungur, Bilal & Topaloğlu, Bahattin, 2020. "Experimental analysis of combustion performance of biodiesel absorbed pellets in a domestic boiler," Energy, Elsevier, vol. 201(C).
    19. Pegoretti Leite de Souza, Hector Jesus & Muñoz, Fernando & Mendonça, Regis Teixeira & Sáez, Katia & Olave, Rodrigo & Segura, Cristina & de Souza, Daniel P.L. & de Paula Protásio, Thiago & Rodríguez-So, 2021. "Influence of lignin distribution, physicochemical characteristics and microstructure on the quality of biofuel pellets made from four different types of biomass," Renewable Energy, Elsevier, vol. 163(C), pages 1802-1816.
    20. Yılmaz, Hasan & Çanakcı, Murad & Topakcı, Mehmet & Karayel, Davut & Yiğit, Mete & Ortaçeşme, Derya, 2023. "In-situ pelletization of campus biomass residues: Case study for Akdeniz University," Renewable Energy, Elsevier, vol. 212(C), pages 972-983.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:498-508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.