IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp997-1003.html
   My bibliography  Save this article

The use of lignocellulosic waste in the production of pellets for energy purposes

Author

Listed:
  • Zawiślak, Kazimierz
  • Sobczak, Paweł
  • Kraszkiewicz, Artur
  • Niedziółka, Ignacy
  • Parafiniuk, Stanisław
  • Kuna-Broniowska, Izabela
  • Tanaś, Wojciech
  • Żukiewicz-Sobczak, Wioletta
  • Obidziński, Sławomir

Abstract

Worldwide the search for new raw materials that are suitable for the production of energy pellets is increasing. Each new raw material undergoes evaluation through various analytical processes and quality assessments before being considered for use as energy pellet. In recent times, the raw materials such as agricultural, forestry, and food waste, as well as the surpluses originating from the agri-food production have become very popular for the production of energy pellets. In this study, we evaluated the feasibility of using lignocellulosic raw materials such as chamomile waste, birch sawdust, pea waste, and soybean waste for the production of pellets. In this study, we focused on the production of thermal energy from pellets by assessing the pellets in accordance with the required standards. The results have shown that lignocellulosic raw materials can be used to produce good quality energy pellets. The proportion of individual raw materials determines the individual strength characteristics of pellets and the suitability of pellets to produce thermal energy.

Suggested Citation

  • Zawiślak, Kazimierz & Sobczak, Paweł & Kraszkiewicz, Artur & Niedziółka, Ignacy & Parafiniuk, Stanisław & Kuna-Broniowska, Izabela & Tanaś, Wojciech & Żukiewicz-Sobczak, Wioletta & Obidziński, Sławomi, 2020. "The use of lignocellulosic waste in the production of pellets for energy purposes," Renewable Energy, Elsevier, vol. 145(C), pages 997-1003.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:997-1003
    DOI: 10.1016/j.renene.2019.06.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119308766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wentao Li & Mingfeng Wang & Fanbin Meng & Yifei Zhang & Bo Zhang, 2022. "A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets," Energies, MDPI, vol. 15(19), pages 1-23, October.
    2. Lacrimioara Senila & Ioan Tenu & Petru Carlescu & Oana Raluca Corduneanu & Emanuel Petru Dumitrachi & Eniko Kovacs & Daniela Alexandra Scurtu & Oana Cadar & Anca Becze & Marin Senila & Marius Roman & , 2020. "Sustainable Biomass Pellets Production Using Vineyard Wastes," Agriculture, MDPI, vol. 10(11), pages 1-21, October.
    3. Paweł Sobczak & Kazimierz Zawiślak & Agnieszka Starek & Wioletta Żukiewicz-Sobczak & Agnieszka Sagan & Beata Zdybel & Dariusz Andrejko, 2020. "Compaction Process as a Concept of Press-Cake Production from Organic Waste," Sustainability, MDPI, vol. 12(4), pages 1-11, February.
    4. Pegoretti Leite de Souza, Hector Jesus & Muñoz, Fernando & Mendonça, Regis Teixeira & Sáez, Katia & Olave, Rodrigo & Segura, Cristina & de Souza, Daniel P.L. & de Paula Protásio, Thiago & Rodríguez-So, 2021. "Influence of lignin distribution, physicochemical characteristics and microstructure on the quality of biofuel pellets made from four different types of biomass," Renewable Energy, Elsevier, vol. 163(C), pages 1802-1816.
    5. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
    6. Dessì, Federica & Mureddu, Mauro & Ferrara, Francesca & Pettinau, Alberto, 2022. "A comprehensive pathway on the determination of the kinetic triplet and the reaction mechanism of brewer's spent grain and beech wood chips pyrolysis," Renewable Energy, Elsevier, vol. 190(C), pages 548-559.
    7. Magdalena Dołżyńska & Sławomir Obidziński & Jolanta Piekut & Güray Yildiz, 2020. "The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions," Energies, MDPI, vol. 13(19), pages 1-19, October.
    8. Artur Kraszkiewicz & Artur Przywara & Stanisław Parafiniuk, 2022. "Emission of Nitric Oxide during the Combustion of Various Forms of Solid Biofuels in a Low-Power Heating Device," Energies, MDPI, vol. 15(16), pages 1-19, August.
    9. Joanna Szyszlak-Bargłowicz & Tomasz Słowik & Grzegorz Zając & Agata Blicharz-Kania & Beata Zdybel & Dariusz Andrejko & Sławomir Obidziński, 2021. "Energy Parameters of Miscanthus Biomass Pellets Supplemented with Copra Meal in Terms of Energy Consumption during the Pressure Agglomeration Process," Energies, MDPI, vol. 14(14), pages 1-16, July.
    10. da Silva, Sandra Bezerra & Arantes, Marina Donária Chaves & de Andrade, Jaily Kerller Batista & Andrade, Carlos Rogério & Carneiro, Angélica de Cássia Oliveira & Protásio, Thiago de Paula, 2020. "Influence of physical and chemical compositions on the properties and energy use of lignocellulosic biomass pellets in Brazil," Renewable Energy, Elsevier, vol. 147(P1), pages 1870-1879.
    11. Jerzy Chojnacki & Agnieszka Zdanowicz & Juraj Ondruška & Ľubomír Šooš & Małgorzata Smuga-Kogut, 2021. "The Influence of Apple, Carrot and Red Beet Pomace Content on the Properties of Pellet from Barley Straw," Energies, MDPI, vol. 14(2), pages 1-13, January.
    12. de Souza, Hector Jesus Pegoretti Leite & Arantes, Marina Donária Chaves & Vidaurre, Graziela Baptista & Andrade, Carlos Rogério & Carneiro, Angélica de Cássia Oliveira & de Souza, Daniel Pegoretti Lei, 2020. "Pelletization of eucalyptus wood and coffee growing wastes: Strategies for biomass valorization and sustainable bioenergy production," Renewable Energy, Elsevier, vol. 149(C), pages 128-140.
    13. Gigel Paraschiv & Georgiana Moiceanu & Gheorghe Voicu & Mihai Chitoiu & Petru Cardei & Mirela Nicoleta Dinca & Paula Tudor, 2021. "Optimization Issues of a Hammer Mill Working Process Using Statistical Modelling," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    14. Marcin Jewiarz & Marek Wróbel & Krzysztof Mudryk & Szymon Szufa, 2020. "Impact of the Drying Temperature and Grinding Technique on Biomass Grindability," Energies, MDPI, vol. 13(13), pages 1-22, July.
    15. Dao, Cuong N. & Salam, Abdul & Kim Oanh, Nguyen Thi & Tabil, Lope G., 2022. "Effects of length-to-diameter ratio, pinewood sawdust, and sodium lignosulfonate on quality of rice straw pellets produced via a flat die pellet mill," Renewable Energy, Elsevier, vol. 181(C), pages 1140-1154.
    16. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    17. Alessio Ilari & Giuseppe Toscano & Ester Foppa Pedretti & Sara Fabrizi & Daniele Duca, 2020. "Environmental Sustainability of Heating Systems Based on Pellets Produced in Mobile and Stationary Plants from Vineyard Pruning Residues," Resources, MDPI, vol. 9(8), pages 1-14, August.
    18. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:997-1003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.