IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1859-d344463.html
   My bibliography  Save this article

Effect of Compaction Pressure and Moisture Content on Quality Parameters of Perennial Biomass Pellets

Author

Listed:
  • Jakub Styks

    (Department of Mechanical Engineering and Agrophisics, University of Agriculture in Kraków, Balicka 120, 30-149 Kraków, Poland)

  • Marek Wróbel

    (Department of Mechanical Engineering and Agrophisics, University of Agriculture in Kraków, Balicka 120, 30-149 Kraków, Poland)

  • Jarosław Frączek

    (Department of Mechanical Engineering and Agrophisics, University of Agriculture in Kraków, Balicka 120, 30-149 Kraków, Poland)

  • Adrian Knapczyk

    (Department of Mechanical Engineering and Agrophisics, University of Agriculture in Kraków, Balicka 120, 30-149 Kraków, Poland)

Abstract

In Poland the use of solid biomass obtained from intentional plantations of energy plants is increasing. This biomass is most often processed into solid fuels. There are growing indications that renewable energy sources, in particular biomass production, will continue to develop, so the better we know the raw material, the more effectively we will be able to use it. The results of tests that determine the impact of compaction pressure on selected quality parameters of pellets made from selected biomass types are presented. Material from plants such as Giant miscanthus ( Miscanthus × giganteus Greef et Deu), Cup plant ( Silphium perfoliatum L.), Virginia mallow ( Sida hermaphrodita (L.) Rusby) was studied. The compaction process was carried out using the SIRIO P400 hydraulic press with a closed chamber with a diameter of 12 mm. Samples were made in four pressures: 131; 196; 262; 327 MPa and three moisture levels: 8%, 11%, 14%. It was found that with increasing compaction pressure and moisture content up to a certain point, the density and durability of the pellets also increased. Each of the materials is characterized by a specific course of changes in the parameters tested.

Suggested Citation

  • Jakub Styks & Marek Wróbel & Jarosław Frączek & Adrian Knapczyk, 2020. "Effect of Compaction Pressure and Moisture Content on Quality Parameters of Perennial Biomass Pellets," Energies, MDPI, vol. 13(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1859-:d:344463
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1859/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1859/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Magdalena Dołżyńska & Sławomir Obidziński & Małgorzata Kowczyk-Sadowy & Małgorzata Krasowska, 2019. "Densification and Combustion of Cherry Stones," Energies, MDPI, vol. 12(16), pages 1-15, August.
    2. Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.
    3. Vincenzo Civitarese & Andrea Acampora & Giulio Sperandio & Alberto Assirelli & Rodolfo Picchio, 2019. "Production of Wood Pellets from Poplar Trees Managed as Coppices with Different Harvesting Cycles," Energies, MDPI, vol. 12(15), pages 1-16, August.
    4. Samuelsson, Robert & Larsson, Sylvia H. & Thyrel, Mikael & Lestander, Torbjörn A., 2012. "Moisture content and storage time influence the binding mechanisms in biofuel wood pellets," Applied Energy, Elsevier, vol. 99(C), pages 109-115.
    5. Hu, Qiang & Shao, Jingai & Yang, Haiping & Yao, Dingding & Wang, Xianhua & Chen, Hanping, 2015. "Effects of binders on the properties of bio-char pellets," Applied Energy, Elsevier, vol. 157(C), pages 508-516.
    6. Cristina Moliner & Alberto Lagazzo & Barbara Bosio & Rodolfo Botter & Elisabetta Arato, 2020. "Production, Characterization, and Evaluation of Pellets from Rice Harvest Residues," Energies, MDPI, vol. 13(2), pages 1-12, January.
    7. Marcin Jewiarz & Krzysztof Mudryk & Marek Wróbel & Jarosław Frączek & Krzysztof Dziedzic, 2020. "Parameters Affecting RDF-Based Pellet Quality," Energies, MDPI, vol. 13(4), pages 1-17, February.
    8. Jaya Shankar Tumuluru, 2019. "Pelleting of Pine and Switchgrass Blends: Effect of Process Variables and Blend Ratio on the Pellet Quality and Energy Consumption," Energies, MDPI, vol. 12(7), pages 1-26, March.
    9. Peter Križan & Miloš Matú & Ľubomír Šooš & Juraj Beniak, 2015. "Behavior of Beech Sawdust during Densification into a Solid Biofuel," Energies, MDPI, vol. 8(7), pages 1-17, June.
    10. Anthony Ike Anukam & Jonas Berghel & Stefan Frodeson & Elizabeth Bosede Famewo & Pardon Nyamukamba, 2019. "Characterization of Pure and Blended Pellets Made from Norway Spruce and Pea Starch: A Comparative Study of Bonding Mechanism Relevant to Quality," Energies, MDPI, vol. 12(23), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    2. Bogdan Saletnik & Marcin Fiedur & Radosław Kwarciany & Grzegorz Zaguła & Marcin Bajcar, 2024. "Pyrolysis as a Method for Processing of Waste from Production of Cultivated Tobacco ( Nicotiana tabacum L.)," Sustainability, MDPI, vol. 16(7), pages 1-15, March.
    3. Marcin Jewiarz & Marek Wróbel & Krzysztof Mudryk & Szymon Szufa, 2020. "Impact of the Drying Temperature and Grinding Technique on Biomass Grindability," Energies, MDPI, vol. 13(13), pages 1-22, July.
    4. Dumitru Peni & Mariusz Jerzy Stolarski & Anna Bordiean & Michał Krzyżaniak & Marcin Dębowski, 2020. "Silphium perfoliatum —A Herbaceous Crop with Increased Interest in Recent Years for Multi-Purpose Use," Agriculture, MDPI, vol. 10(12), pages 1-22, December.
    5. Wentao Li & Mingfeng Wang & Fanbin Meng & Yifei Zhang & Bo Zhang, 2022. "A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets," Energies, MDPI, vol. 15(19), pages 1-23, October.
    6. Jakub Styks & Marek Wróbel, 2024. "Modular Open Chamber Stand for Biomass Densification Using the Example of Miscanthus × Giganteus Greef Et Deu," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
    7. Okey Francis Obi & Ralf Pecenka, 2023. "Briquetting of Poplar Wood from Short Rotation Coppice—The Effects of Moisture Content and Hammer Mill Screen Size," Energies, MDPI, vol. 16(3), pages 1-14, February.
    8. Weronika Tulej & Szymon Głowacki & Andrzej Bryś & Mariusz Sojak & Piotr Wichowski & Krzysztof Górnicki, 2021. "Research on Determination of Water Diffusion Coefficient in Single Particles of Wood Biomass Dried Using Convective Drying Method," Energies, MDPI, vol. 14(4), pages 1-12, February.
    9. Wentao Li & Rongwei Yu & Lina Luo & Hongying Shi, 2024. "Process Optimization of Pellet Manufacturing from Mixed Materials in Ultrasonic Vibration-Assisted Pelleting," Energies, MDPI, vol. 17(9), pages 1-13, April.
    10. Sławomir Francik & Bogusława Łapczyńska-Kordon & Norbert Pedryc & Wojciech Szewczyk & Renata Francik & Zbigniew Ślipek, 2022. "The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus," Sustainability, MDPI, vol. 14(5), pages 1-26, March.
    11. Zongyou Ben & Xubo Zhang & Duoxing Yang & Kunjie Chen, 2023. "An Experimental and Numerical Study for Discrete Element Model Parameters Calibration: Gluten Pellets," Agriculture, MDPI, vol. 13(4), pages 1-18, March.
    12. San Miguel, G. & Sánchez, F. & Pérez, A. & Velasco, L., 2022. "One-step torrefaction and densification of woody and herbaceous biomass feedstocks," Renewable Energy, Elsevier, vol. 195(C), pages 825-840.
    13. Bogdan Saletnik & Marcin Bajcar & Aneta Saletnik & Grzegorz Zaguła & Czesław Puchalski, 2021. "Effect of the Pyrolysis Process Applied to Waste Branches Biomass from Fruit Trees on the Calorific Value of the Biochar and Dust Explosivity," Energies, MDPI, vol. 14(16), pages 1-18, August.
    14. Pasawat Sanchumpu & Wiriya Suaili & Siwakorn Nonsawang & Chaiyan Junsiri & Peeranat Ansuree & Kittipong Laloon, 2024. "Biomass Pellet Processing from Sugar Industry Byproducts: A Study on Pelletizing Behavior and Energy Usage," Sustainability, MDPI, vol. 16(14), pages 1-26, July.
    15. Grzegorz Łysiak & Ryszard Kulig & Alina Kowalczyk-Juśko, 2023. "Toward New Value-Added Products Made from Anaerobic Digestate: Part 2—Effect of Loading Level on the Densification of Solid Digestate," Sustainability, MDPI, vol. 15(9), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuyang Cui & Junhong Yang & Xinyu Shi & Wanning Lei & Tao Huang & Chao Bai, 2019. "Experimental Investigation on the Energy Consumption, Physical, and Thermal Properties of a Novel Pellet Fuel Made from Wood Residues with Microalgae as a Binder," Energies, MDPI, vol. 12(18), pages 1-26, September.
    2. Marcin Jewiarz & Marek Wróbel & Krzysztof Mudryk & Szymon Szufa, 2020. "Impact of the Drying Temperature and Grinding Technique on Biomass Grindability," Energies, MDPI, vol. 13(13), pages 1-22, July.
    3. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    4. Yılmaz, Hasan & Çanakcı, Murad & Topakcı, Mehmet & Karayel, Davut & Yiğit, Mete & Ortaçeşme, Derya, 2023. "In-situ pelletization of campus biomass residues: Case study for Akdeniz University," Renewable Energy, Elsevier, vol. 212(C), pages 972-983.
    5. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
    6. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    7. Bruno Rafael de Almeida Moreira & Ronaldo da Silva Viana & Victor Hugo Cruz & Paulo Renato Matos Lopes & Celso Tadao Miasaki & Anderson Chagas Magalhães & Paulo Alexandre Monteiro de Figueiredo & Luca, 2020. "Anti-Thermal Shock Binding of Liquid-State Food Waste to Non-Wood Pellets," Energies, MDPI, vol. 13(12), pages 1-26, June.
    8. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    9. Jianbiao Liu & Xuya Jiang & Yanhao Yuan & Huanhuan Chen & Wenbin Zhang & Hongzhen Cai & Feng Gao, 2022. "Densification of Yak Manure Biofuel Pellets and Evaluation of Parameters: Effects on Properties," Energies, MDPI, vol. 15(5), pages 1-14, February.
    10. Wentao Li & Mingfeng Wang & Fanbin Meng & Yifei Zhang & Bo Zhang, 2022. "A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets," Energies, MDPI, vol. 15(19), pages 1-23, October.
    11. Jung-Kyu Lee & Dongho Hong & Hyunkyu Chae & Dong-Hoon Lee, 2023. "Prediction of Storage Conditions to Increase the Bioenergy Efficiency of Giant Miscanthus Pellets Produced through On-Site Integrated Pretreatment Machines," Energies, MDPI, vol. 16(5), pages 1-14, March.
    12. Maaz Hassan & Naveed Usman & Majid Hussain & Adnan Yousaf & Muhammad Aamad Khattak & Sidra Yousaf & Rankeshwarnath Sanjay Mishr & Sana Ahmad & Fariha Rehman & Ahmad Rashedi, 2023. "Environmental and Socio-Economic Assessment of Biomass Pellets Biofuel in Hazara Division, Pakistan," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    13. Safa Arous & Ahmed Koubaa & Hassine Bouafif & Besma Bouslimi & Flavia Lega Braghiroli & Chedly Bradai, 2021. "Effect of Pyrolysis Temperature and Wood Species on the Properties of Biochar Pellets," Energies, MDPI, vol. 14(20), pages 1-15, October.
    14. Solarte-Toro, Juan Camilo & González-Aguirre, Jose Andrés & Poveda Giraldo, Jhonny Alejandro & Cardona Alzate, Carlos A., 2021. "Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    15. Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
    16. Dan Liu & Da Teng & Yan Zhu & Xingde Wang & Hanyang Wang, 2023. "Optimization of Process Parameters for Pellet Production from Corn Stalk Rinds Using Box–Behnken Design," Energies, MDPI, vol. 16(12), pages 1-20, June.
    17. Rudolfsson, Magnus & Larsson, Sylvia H. & Lestander, Torbjörn A., 2017. "New tool for improved control of sub-process interactions in rotating ring die pelletizing of torrefied biomass," Applied Energy, Elsevier, vol. 190(C), pages 835-840.
    18. Hamid Gilvari & Wiebren De Jong & Dingena L. Schott, 2020. "The Effect of Biomass Pellet Length, Test Conditions and Torrefaction on Mechanical Durability Characteristics According to ISO Standard 17831-1," Energies, MDPI, vol. 13(11), pages 1-16, June.
    19. Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
    20. Sergio Jaimes Rueda & Bruna Rego de Vasconcelos & Xavier Duret & Jean-Michel Lavoie, 2022. "Lignin Pellets for Advanced Thermochemical Process—From a Single Pellet System to a Laboratory-Scale Pellet Mill," Energies, MDPI, vol. 15(9), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1859-:d:344463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.