IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4130-d396949.html
   My bibliography  Save this article

Willow Biomass as Energy Feedstock: The Effect of Habitat, Genotype and Harvest Rotation on Thermophysical Properties and Elemental Composition

Author

Listed:
  • Mariusz Jerzy Stolarski

    (Centre for Bioeconomy and Renewable Energies, Department of Plant Breeding and Seed Production, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury, Plac Łódzki 3, 10-724 Olsztyn, Poland)

  • Michał Krzyżaniak

    (Centre for Bioeconomy and Renewable Energies, Department of Plant Breeding and Seed Production, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury, Plac Łódzki 3, 10-724 Olsztyn, Poland)

  • Kazimierz Warmiński

    (Centre for Bioeconomy and Renewable Energies, Department of Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury, Prawocheńskiego 17, 10-720 Olsztyn, Poland)

  • Dariusz Załuski

    (Centre for Bioeconomy and Renewable Energies, Department of Plant Breeding and Seed Production, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury, Plac Łódzki 3, 10-724 Olsztyn, Poland)

  • Ewelina Olba-Zięty

    (Centre for Bioeconomy and Renewable Energies, Department of Plant Breeding and Seed Production, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury, Plac Łódzki 3, 10-724 Olsztyn, Poland)

Abstract

Willow biomass is used as a bioenergy source in various conversion technologies. It is noteworthy that apart from the beneficial environmental impact of a willow plantation, the biomass quality is also very important as it has an impact on the effectiveness of its use and emissions produced in various bioenergy technologies. Therefore, this study analysed the thermophysical properties and elemental composition of 15 genotypes of willow biomass from two plantations situated in the north of Poland, harvested in two consecutive three-year rotations. The differences in the moisture content, ash content and the lower heating value were mainly determined by the genotype, i.e., by genetic factors. In contrast, the content of carbon, nitrogen, sulphur and hydrogen was determined by the location (environmental factors), but also by the genotype, and by a combination of these factors. The following were the mean levels of the willow biomass characteristics, regardless of the location, genotype and harvest rotation: 48.9% moisture content, 1.26% d.m. ash content, 19.4% d.m. fixed carbon, 79.4% d.m. volatile matter, 19.53 MJ kg −1 d.m. higher heating value, 8.20 MJ kg −1 lower heating value, 52.90% d.m. carbon, 6.23% d.m. hydrogen, 0.032% d.m. sulphur, 0.42% d.m. nitrogen. The present research has shown that the selection of the willow genotype is important for the quality of biomass as energy feedstock. However, plantation location, as well as successive harvest rotations, can have a significant impact on the biomass elemental composition.

Suggested Citation

  • Mariusz Jerzy Stolarski & Michał Krzyżaniak & Kazimierz Warmiński & Dariusz Załuski & Ewelina Olba-Zięty, 2020. "Willow Biomass as Energy Feedstock: The Effect of Habitat, Genotype and Harvest Rotation on Thermophysical Properties and Elemental Composition," Energies, MDPI, vol. 13(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4130-:d:396949
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Njakou Djomo, S. & Witters, N. & Van Dael, M. & Gabrielle, B. & Ceulemans, R., 2015. "Impact of feedstock, land use change, and soil organic carbon on energy and greenhouse gas performance of biomass cogeneration technologies," Applied Energy, Elsevier, vol. 154(C), pages 122-130.
    2. Esperanza Monedero & Juan José Hernández & Rocío Collado, 2017. "Combustion-Related Properties of Poplar, Willow and Black Locust to be used as Fuels in Power Plants," Energies, MDPI, vol. 10(7), pages 1-11, July.
    3. Giuseppe Toscano & Vincenzo Alfano & Antonio Scarfone & Luigi Pari, 2018. "Pelleting Vineyard Pruning at Low Cost with a Mobile Technology," Energies, MDPI, vol. 11(9), pages 1-17, September.
    4. Luigi Pari & Vincenzo Alfano & Daniel Garcia-Galindo & Alessandro Suardi & Enrico Santangelo, 2018. "Pruning Biomass Potential in Italy Related to Crop Characteristics, Agricultural Practices and Agro-Climatic Conditions," Energies, MDPI, vol. 11(6), pages 1-16, May.
    5. Mariusz Jerzy Stolarski & Kazimierz Warmiński & Michał Krzyżaniak, 2020. "Energy Value of Yield and Biomass Quality of Poplar Grown in Two Consecutive 4-Year Harvest Rotations in the North-East of Poland," Energies, MDPI, vol. 13(6), pages 1-13, March.
    6. Stolarski, Mariusz J. & Niksa, Dariusz & Krzyżaniak, Michał & Tworkowski, Józef & Szczukowski, Stefan, 2019. "Willow productivity from small- and large-scale experimental plantations in Poland from 2000 to 2017," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 461-475.
    7. Nordborg, Maria & Berndes, Göran & Dimitriou, Ioannis & Henriksson, Annika & Mola-Yudego, Blas & Rosenqvist, Håkan, 2018. "Energy analysis of willow production for bioenergy in Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 473-482.
    8. Stolarski, Mariusz J. & Szczukowski, Stefan & Tworkowski, Józef & Krzyżaniak, Michał, 2013. "Cost of heat energy generation from willow biomass," Renewable Energy, Elsevier, vol. 59(C), pages 100-104.
    9. Mariusz Jerzy Stolarski & Stefan Szczukowski & Michał Krzyżaniak & Józef Tworkowski, 2020. "Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil," Energies, MDPI, vol. 13(9), pages 1-12, April.
    10. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Stachowicz, Paweł, 2020. "Energy consumption and heating costs for a detached house over a 12-year period – Renewable fuels versus fossil fuels," Energy, Elsevier, vol. 204(C).
    11. Marcin Bajcar & Grzegorz Zaguła & Bogdan Saletnik & Maria Tarapatskyy & Czesław Puchalski, 2018. "Relationship between Torrefaction Parameters and Physicochemical Properties of Torrefied Products Obtained from Selected Plant Biomass," Energies, MDPI, vol. 11(11), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Stachowicz & Mariusz Jerzy Stolarski, 2022. "Thermophysical Properties and Elemental Composition of Black Locust, Poplar and Willow Biomass," Energies, MDPI, vol. 16(1), pages 1-16, December.
    2. Krzysztof Mudryk & Marcin Jewiarz & Marek Wróbel & Marcin Niemiec & Arkadiusz Dyjakon, 2021. "Evaluation of Urban Tree Leaf Biomass-Potential, Physico-Mechanical and Chemical Parameters of Raw Material and Solid Biofuel," Energies, MDPI, vol. 14(4), pages 1-14, February.
    3. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz Jerzy Stolarski & Stefan Szczukowski & Michał Krzyżaniak & Józef Tworkowski, 2020. "Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil," Energies, MDPI, vol. 13(9), pages 1-12, April.
    2. Paweł Stachowicz & Mariusz Jerzy Stolarski, 2022. "Thermophysical Properties and Elemental Composition of Black Locust, Poplar and Willow Biomass," Energies, MDPI, vol. 16(1), pages 1-16, December.
    3. José Antonio Soriano & Reyes García-Contreras & Antonio José Carpio de Los Pinos, 2021. "Study of the Thermochemical Properties of Lignocellulosic Biomass from Energy Crops," Energies, MDPI, vol. 14(13), pages 1-18, June.
    4. Jadwiga Wyszkowska & Agata Borowik & Magdalena Zaborowska & Jan Kucharski, 2023. "Calorific Value of Zea mays Biomass Derived from Soil Contaminated with Chromium (VI) Disrupting the Soil’s Biochemical Properties," Energies, MDPI, vol. 16(9), pages 1-19, April.
    5. Arkadiusz Dyjakon, 2019. "The Influence of Apple Orchard Management on Energy Performance and Pruned Biomass Harvesting for Energetic Applications," Energies, MDPI, vol. 12(4), pages 1-16, February.
    6. Mateusz Ostolski & Marek Adamczak & Bartosz Brzozowski & Mariusz Jerzy Stolarski, 2021. "Screening of Functional Compounds in Supercritical Carbon Dioxide Extracts from Perennial Herbaceous Crops," Agriculture, MDPI, vol. 11(6), pages 1-14, May.
    7. Mariusz Matyka & Paweł Radzikowski, 2020. "Productivity and Biometric Characteristics of 11 Varieties of Willow Cultivated on Marginal Soil," Agriculture, MDPI, vol. 10(12), pages 1-10, December.
    8. Małgorzata Kozak & Rafał Pudełko, 2021. "Impact Assessment of the Long-Term Fallowed Land on Agricultural Soils and the Possibility of Their Return to Agriculture," Agriculture, MDPI, vol. 11(2), pages 1-16, February.
    9. Mariusz Jerzy Stolarski & Kazimierz Warmiński & Michał Krzyżaniak, 2020. "Energy Value of Yield and Biomass Quality of Poplar Grown in Two Consecutive 4-Year Harvest Rotations in the North-East of Poland," Energies, MDPI, vol. 13(6), pages 1-13, March.
    10. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Akincza, Marta, 2020. "Bioenergy technologies and biomass potential vary in Northern European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Mariusz Jerzy Stolarski & Michał Krzyżaniak & Dariusz Załuski & Józef Tworkowski & Stefan Szczukowski, 2020. "Effects of Site, Genotype and Subsequent Harvest Rotation on Willow Productivity," Agriculture, MDPI, vol. 10(9), pages 1-17, September.
    12. Francesco Latterini & Walter Stefanoni & Alessandro Suardi & Vincenzo Alfano & Simone Bergonzoli & Nadia Palmieri & Luigi Pari, 2020. "A GIS Approach to Locate a Small Size Biomass Plant Powered by Olive Pruning and to Estimate Supply Chain Costs," Energies, MDPI, vol. 13(13), pages 1-17, July.
    13. Nadia Palmieri & Alessandro Suardi & Vincenzo Alfano & Luigi Pari, 2020. "Circular Economy Model: Insights from a Case Study in South Italy," Sustainability, MDPI, vol. 12(8), pages 1-11, April.
    14. Sastre, Carlos M. & Carrasco, Juan & Barro, Ruth & González-Arechavala, Yolanda & Maletta, Emiliano & Santos, Ana M. & Ciria, Pilar, 2016. "Improving bioenergy sustainability evaluations by using soil nitrogen balance coupled with life cycle assessment: A case study for electricity generated from rye biomass," Applied Energy, Elsevier, vol. 179(C), pages 847-863.
    15. Altayib, Khalid & Dincer, Ibrahim, 2022. "Development of an integrated hydropower system with hydrogen and methanol production," Energy, Elsevier, vol. 240(C).
    16. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    17. Jankowski, Krzysztof Józef & Dubis, Bogdan & Sokólski, Mateusz Mikołaj & Załuski, Dariusz & Bórawski, Piotr & Szempliński, Władysław, 2019. "Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland," Energy, Elsevier, vol. 185(C), pages 612-623.
    18. Kung, Chih-Chun & Wu, Tao, 2021. "Influence of water allocation on bioenergy production under climate change: A stochastic mathematical programming approach," Energy, Elsevier, vol. 231(C).
    19. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    20. Stolarski, Mariusz J. & Dudziec, Paweł & Krzyżaniak, Michał & Graban, Łukasz & Lajszner, Waldemar & Olba–Zięty, Ewelina, 2024. "How do key for the bioenergy industry properties of baled biomass change over two years of storage?," Renewable Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4130-:d:396949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.