IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v183y2022icp662-675.html
   My bibliography  Save this article

Modeling and simulation process for solketal synthesis from glycerol and acetone by catalytic distillation in a modified structure of a divided wall column

Author

Listed:
  • Bumbac, Gheorghe
  • Banu, Ionut

Abstract

The increasing biodiesel production generates important amounts of glycerol, by-product that require the development of new and sustainable processes in order to be converted into value added chemicals. In this paper special attention was given to possibility to transform glycerol into solketal, a promising fuel additive able to enhance stability to oxidation and increase the octane number of fuels. Given that the chemical reaction is thermodynamically limited, the current paper proposes a conceptual design of an industrial scale process flowsheet based on a modified structure of a catalytic distillation dividing wall column (CDDWC) in which acetone is used as a stripping agent, in an integrated reaction-separation structured-packing system. The modeling and simulation results performed in Aspen Hysys shown the technical feasibility, the glycerol conversion in the proposed process being over 99% and the purity of the solketal product over 99.5% (wt) with a high-quality utility (16 barg pressure steam) consumption of 2441 kJ/kg close to other values reported in the literature and an acetone specific consumption of 0.495 kg/kg solketal.

Suggested Citation

  • Bumbac, Gheorghe & Banu, Ionut, 2022. "Modeling and simulation process for solketal synthesis from glycerol and acetone by catalytic distillation in a modified structure of a divided wall column," Renewable Energy, Elsevier, vol. 183(C), pages 662-675.
  • Handle: RePEc:eee:renene:v:183:y:2022:i:c:p:662-675
    DOI: 10.1016/j.renene.2021.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121015731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nanda, Malaya R. & Zhang, Yongsheng & Yuan, Zhongshun & Qin, Wensheng & Ghaziaskar, Hassan S. & Xu, Chunbao (Charles), 2016. "Catalytic conversion of glycerol for sustainable production of solketal as a fuel additive: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1022-1031.
    2. Banu, Ionut & Bumbac, Gheorghe & Bombos, Dorin & Velea, Sanda & Gălan, Ana-Maria & Bozga, Grigore, 2020. "Glycerol acetylation with acetic acid over Purolite CT-275. Product yields and process kinetics," Renewable Energy, Elsevier, vol. 148(C), pages 548-557.
    3. Ardi, M.S. & Aroua, M.K. & Hashim, N. Awanis, 2015. "Progress, prospect and challenges in glycerol purification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1164-1173.
    4. Trifoi, Ancuţa Roxana & Agachi, Paul Şerban & Pap, Timea, 2016. "Glycerol acetals and ketals as possible diesel additives. A review of their synthesis protocols," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 804-814.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vannucci, Julián A. & Gatti, Martín N. & Cardaci, Nicolas & Nichio, Nora N., 2022. "Economic feasibility of a solketal production process from glycerol at small industrial scale," Renewable Energy, Elsevier, vol. 190(C), pages 540-547.
    2. Geng, Xueli & Yan, Peng & Zhou, Hao & Li, Hong & Gao, Xin, 2023. "Process synthesis and 4E evaluation of hybrid reactive distillation processes for the ethanol and tert-butanol recovery from wastewater," Renewable Energy, Elsevier, vol. 205(C), pages 929-944.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okoye, P.U. & Abdullah, A.Z. & Hameed, B.H., 2017. "A review on recent developments and progress in the kinetics and deactivation of catalytic acetylation of glycerol—A byproduct of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 387-401.
    2. Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
    3. Sedghi, Reza & Shahbeik, Hossein & Rastegari, Hajar & Rafiee, Shahin & Peng, Wanxi & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Chen, Wei-Hsin & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & A, 2022. "Turning biodiesel glycerol into oxygenated fuel additives and their effects on the behavior of internal combustion engines: A comprehensive systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Is Fatimah & Imam Sahroni & Ganjar Fadillah & Muhammad Miqdam Musawwa & Teuku Meurah Indra Mahlia & Oki Muraza, 2019. "Glycerol to Solketal for Fuel Additive: Recent Progress in Heterogeneous Catalysts," Energies, MDPI, vol. 12(15), pages 1-14, July.
    5. Louise R. Smith & Mark Douthwaite & Karl Mugford & Nicholas F. Dummer & David J. Willock & Graham J. Hutchings & Stuart H. Taylor, 2022. "Recent Advances on the Valorization of Glycerol into Alcohols," Energies, MDPI, vol. 15(17), pages 1-22, August.
    6. Makarevičienė, Violeta & Kazancev, Kiril & Sendžikienė, Eglė & Gumbytė, Milda, 2024. "Application of simultaneous rapeseed oil extraction and interesterification with methyl formate using enzymatic catalyst," Renewable Energy, Elsevier, vol. 227(C).
    7. Carvalho, Lara & Lundgren, Joakim & Wetterlund, Elisabeth & Wolf, Jens & Furusjö, Erik, 2018. "Methanol production via black liquor co-gasification with expanded raw material base – Techno-economic assessment," Applied Energy, Elsevier, vol. 225(C), pages 570-584.
    8. Abel Rodrigues & João Carlos Bordado & Rui Galhano dos Santos, 2017. "Upgrading the Glycerol from Biodiesel Production as a Source of Energy Carriers and Chemicals—A Technological Review for Three Chemical Pathways," Energies, MDPI, vol. 10(11), pages 1-36, November.
    9. Matheus Oliveira & Ana Ramos & Eliseu Monteiro & Abel Rouboa, 2022. "Improvement of the Crude Glycerol Purification Process Derived from Biodiesel Production Waste Sources through Computational Modeling," Sustainability, MDPI, vol. 14(3), pages 1-12, February.
    10. Rafael Estevez & Laura Aguado-Deblas & Diego Luna & Felipa M. Bautista, 2019. "An Overview of the Production of Oxygenated Fuel Additives by Glycerol Etherification, Either with Isobutene or tert -Butyl Alcohol, over Heterogeneous Catalysts," Energies, MDPI, vol. 12(12), pages 1-20, June.
    11. Alptekin, Ertan, 2017. "Emission, injection and combustion characteristics of biodiesel and oxygenated fuel blends in a common rail diesel engine," Energy, Elsevier, vol. 119(C), pages 44-52.
    12. Jindapon, Wayu & Ruengyoo, Supapan & Kuchonthara, Prapan & Ngamcharussrivichai, Chawalit & Vitidsant, Tharapong, 2020. "Continuous production of fatty acid methyl esters and high-purity glycerol over a dolomite-derived extrudate catalyst in a countercurrent-flow trickle-bed reactor," Renewable Energy, Elsevier, vol. 157(C), pages 626-636.
    13. Vannucci, Julián A. & Gatti, Martín N. & Cardaci, Nicolas & Nichio, Nora N., 2022. "Economic feasibility of a solketal production process from glycerol at small industrial scale," Renewable Energy, Elsevier, vol. 190(C), pages 540-547.
    14. Marcio Jose da Silva & Neide Paloma Gonçalves Lopes & Alana Alves Rodrigues, 2023. "Biodiesel Additives Synthesis Using Solid Heteropolyacid Catalysts," Energies, MDPI, vol. 16(3), pages 1-29, January.
    15. Zhang, Jianan & Wang, Yuesen & Muldoon, Valerie L. & Deng, Sili, 2022. "Crude glycerol and glycerol as fuels and fuel additives in combustion applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Ramalingam, Senthil & Ezhumalai, Manikandan & Govindasamy, Mohan, 2019. "Syngas: Derived from biodiesel and its influence on CI engine," Energy, Elsevier, vol. 189(C).
    17. Yadav, Nidhi & Yadav, Gaurav & Ahmaruzzaman, Md., 2024. "Camellia sinensis leaf-assisted green synthesis of SO3H-functionalized ZnS/biochar nanocatalyst for highly selective solketal production and improved reusability in methylene blue dye adsorption," Renewable Energy, Elsevier, vol. 224(C).
    18. Zhao, Man & Wang, Yanan & Zhou, Wenting & Zhou, Wei & Gong, Zhiwei, 2023. "Co-valorization of crude glycerol and low-cost substrates via oleaginous yeasts to micro-biodiesel: Status and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    19. Muhammad Harussani Moklis & Shou Cheng & Jeffrey S. Cross, 2023. "Current and Future Trends for Crude Glycerol Upgrading to High Value-Added Products," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    20. Mohsin Raza & Abrar Inayat & Basim Abu-Jdayil, 2021. "Crude Glycerol as a Potential Feedstock for Future Energy via Thermochemical Conversion Processes: A Review," Sustainability, MDPI, vol. 13(22), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:183:y:2022:i:c:p:662-675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.