IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1747-d741224.html
   My bibliography  Save this article

Improvement of the Crude Glycerol Purification Process Derived from Biodiesel Production Waste Sources through Computational Modeling

Author

Listed:
  • Matheus Oliveira

    (Department of Mechanical Engineering, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal)

  • Ana Ramos

    (LAETA-INEGI, Associated Laboratory for Energy, Transports and Aeronautics, Institute of Science and Innovation in Mechanical and Industrial Engineering, R. Dr. Roberto Frias, 4200-465 Porto, Portugal)

  • Eliseu Monteiro

    (LAETA-INEGI, Associated Laboratory for Energy, Transports and Aeronautics, Institute of Science and Innovation in Mechanical and Industrial Engineering, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
    Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal)

  • Abel Rouboa

    (LAETA-INEGI, Associated Laboratory for Energy, Transports and Aeronautics, Institute of Science and Innovation in Mechanical and Industrial Engineering, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
    Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
    Department of Mechanical Engineering and Applied Mechanics, School of Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA)

Abstract

Considering waste as a possible new resource for useful purposes is one of the strategies included in the circular economy principles. In fact, industrial processes are seen as great contributors to the formation of waste streams. With the aim to attain more sustainable and resilient systems, in this study, a process flow chart was elaborated in an Aspen Plus computer simulator, to obtain the production of pure glycerol from crude glycerol (a by-product of biodiesel production). This process occurs through fractional vacuum distillation, the methanol recovery route in the deacidification process and the removal of methanol from the reaction medium. The separation stages of the crude glycerol implemented enabled a degree of purification of 99.77%, meeting the specifications of the pharmaceutical use. The developed model allowed for the optimization of the purification process, raising by 40% the mass flow rate of pure glycerol. A conclusion could be drawn that the use of crude glycerol is an excellent option for the development of new products with greater added-value, contributing to the zero waste principles and to the circular economy.

Suggested Citation

  • Matheus Oliveira & Ana Ramos & Eliseu Monteiro & Abel Rouboa, 2022. "Improvement of the Crude Glycerol Purification Process Derived from Biodiesel Production Waste Sources through Computational Modeling," Sustainability, MDPI, vol. 14(3), pages 1-12, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1747-:d:741224
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ardi, M.S. & Aroua, M.K. & Hashim, N. Awanis, 2015. "Progress, prospect and challenges in glycerol purification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1164-1173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. A. Viraj Miyuranga & Udara S. P. R. Arachchige & Randika A. Jayasinghe & Gamunu Samarakoon, 2022. "Purification of Residual Glycerol from Biodiesel Production as a Value-Added Raw Material for Glycerolysis of Free Fatty Acids in Waste Cooking Oil," Energies, MDPI, vol. 15(23), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makarevičienė, Violeta & Kazancev, Kiril & Sendžikienė, Eglė & Gumbytė, Milda, 2024. "Application of simultaneous rapeseed oil extraction and interesterification with methyl formate using enzymatic catalyst," Renewable Energy, Elsevier, vol. 227(C).
    2. Carvalho, Lara & Lundgren, Joakim & Wetterlund, Elisabeth & Wolf, Jens & Furusjö, Erik, 2018. "Methanol production via black liquor co-gasification with expanded raw material base – Techno-economic assessment," Applied Energy, Elsevier, vol. 225(C), pages 570-584.
    3. Abel Rodrigues & João Carlos Bordado & Rui Galhano dos Santos, 2017. "Upgrading the Glycerol from Biodiesel Production as a Source of Energy Carriers and Chemicals—A Technological Review for Three Chemical Pathways," Energies, MDPI, vol. 10(11), pages 1-36, November.
    4. Jindapon, Wayu & Ruengyoo, Supapan & Kuchonthara, Prapan & Ngamcharussrivichai, Chawalit & Vitidsant, Tharapong, 2020. "Continuous production of fatty acid methyl esters and high-purity glycerol over a dolomite-derived extrudate catalyst in a countercurrent-flow trickle-bed reactor," Renewable Energy, Elsevier, vol. 157(C), pages 626-636.
    5. Zhang, Jianan & Wang, Yuesen & Muldoon, Valerie L. & Deng, Sili, 2022. "Crude glycerol and glycerol as fuels and fuel additives in combustion applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Zhao, Man & Wang, Yanan & Zhou, Wenting & Zhou, Wei & Gong, Zhiwei, 2023. "Co-valorization of crude glycerol and low-cost substrates via oleaginous yeasts to micro-biodiesel: Status and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    7. Mohsin Raza & Abrar Inayat & Basim Abu-Jdayil, 2021. "Crude Glycerol as a Potential Feedstock for Future Energy via Thermochemical Conversion Processes: A Review," Sustainability, MDPI, vol. 13(22), pages 1-27, November.
    8. Okoye, P.U. & Abdullah, A.Z. & Hameed, B.H., 2017. "A review on recent developments and progress in the kinetics and deactivation of catalytic acetylation of glycerol—A byproduct of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 387-401.
    9. Monteiro, Marcos Roberto & Kugelmeier, Cristie Luis & Pinheiro, Rafael Sanaiotte & Batalha, Mario Otávio & da Silva César, Aldara, 2018. "Glycerol from biodiesel production: Technological paths for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 109-122.
    10. Zhang, Ming & Xue, Wenfeng & Su, Baogen & Bao, Zongbi & Wen, Guangdong & Xing, Huabin & Ren, Qilong, 2017. "Conversion of glycerol into syngas by rotating DC arc plasma," Energy, Elsevier, vol. 123(C), pages 1-8.
    11. Bumbac, Gheorghe & Banu, Ionut, 2022. "Modeling and simulation process for solketal synthesis from glycerol and acetone by catalytic distillation in a modified structure of a divided wall column," Renewable Energy, Elsevier, vol. 183(C), pages 662-675.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1747-:d:741224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.